Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds
论文:https://arxiv.org/abs/1907.12046
Abstract
- 提出了扩张点卷积(DPC)。
- 感受野的大小与3D点云处理任务的性能直接相关,包括语义分割和对象分类。
- DPC大大增加了点卷积的接收场大小。
- DPC可以轻松地集成到大多数现有的点卷积网络中。
(一)Introduction
重要性: 神经单元的感受野描述了影响其输出值的输入数据区域。感受野之外的所有输入数据均不影响输出。因此,大的感受野很重要,因为它们可以在较大的输入上下文中进行推理。
困难: 由于3D点云的结构不均匀,因此难以计算接收场的理论大小,因此该研究尤其具有挑战性。
分析: 可视化感受野以分析不同的网络体系结构,进行全面的消融研究,比较几种增加点卷积感受野的策略。
- 堆叠卷积层
- 使用较大内核
通过观察所得感受野的程度,注意到它们的影响仍然相当有限。
改进: 基于这些观察,论文提出了Dilated Point Convolutions作为一种显着增加点卷积的感受野大小的方法。
贡献:
- 评估了当前使用点卷积方法增加感受野的最常用策略。
- 可视化点卷积的感受野,以做出有根据的网络设计。
- 从这些观察结果中,提出膨胀点卷积(DPC)作为一种明显增加接收场大小的机制。
- 使用DPC,在S3DIS 和ScanNet 上的3D语义分割任务以及ModelNet40 上的形状分类上取得了非常好的结果。
(二)Related Work
大同小异,故不重复赘述。
(三)Approach
A. Point Convolutions
点卷积可以使用D维空间中连续卷积的一般定义来表述。连续卷积定义为:
( f ∗ g ) ( p i ) = ∫ − ∞ + ∞ f ( p j ) ⊙ g ( p i − p j ) d p j − − − − − ( 1 ) (f\ast g)(p_{i})=\int_{- \infty}^{+ \infty}f(p_{j})\odot g(p_{i}-p_{j})dp_{j}-----(1) (f∗g)(pi)=∫−∞+∞f(pj)⊙g(pi−pj)dpj−−−−−(1)
注释:
- ⊙ \odot ⊙ 是连续特征函数