逻辑回归-二分类
数据集是自己生成的,训练集8000个,每个样本10个特征和1个标签,测试集2000个,每个样本10个特征和1个标签
读取数据
# coding: utf-8
import numpy as np
#获取训练数据
def get_data():
d = np.load("dataset.npz")
#x_train,y_train分别表示8000个训练集的数据和标签
# x_test,y_test分别表示2000个测试集的数据和标签
x_train = d['x_train'] #8000*10,每个数据10个特征值
y_train = d['y_train'] #8000*1
x_test = d['x_test'] #2000*10
y_test = d['y_test'] #2000*1
# w = d['w']
# b = d['b']
return x_train,y_train,x_test,y_test
if __name__ == '__main__':
x_train, y_train, x_test, y_test, w, b = get_data()
print(x_train,y_train,x_test,y_test