深入理解协方差

1.协方差

1.1 均值、标准差、方差

均值:Xˉ=E(X)=1n∑i=1nXi\bar{X} = E(X) = \frac{1}{n}\sum_{i=1}^{n}X_iXˉ=E(X)=n1i=1nXi

方差:s2=D(X)=1n−1∑i=1n(Xi−Xˉ)2s^2=D(X)=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2s2=D(X)=n11i=1n(XiXˉ)2

标准差:s=D(X)=1n−1∑i=1n(Xi−Xˉ)2s=\sqrt{D(X)}=\sqrt{ \frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2}s=D(X) =n11i=1n(XiXˉ)2

均值描述样本集合的中间点,标准差描述样本集合的各个样本点到均值的距离之平均。

除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即“无偏估计”。

1.2 协方差

标准差和方差一般是用来描述一维数据的,协方差是用来度量两个随机变量关系的统计量。

协方差:cov(X,Y)=1n−1∑i=1n(X−Xiˉ)(Y−Yiˉ)cov(X,Y)=\frac{1}{n-1}\sum_{i=1}^{n}(X-\bar{X_i})(Y-\bar{Y_i})cov(X,Y)=n11i=1n(XXiˉ)(YYiˉ)

上式是求(X−Xiˉ)(Y−Yiˉ)(X-\bar{X_i})(Y-\bar{Y_i})(XXiˉ)(YYiˉ)的均值,所以还可以写做:
cov(X,Y)=E[(X−E(X))(Y−E(Y))]=E(XY)−E(X)E(Y)cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y)cov(X,Y)=E[(XE(X))(YE(Y))]=E(XY)E(X)E(Y)

协方差的性质:

  1. cov(X,X)=var(X)cov(X,X)=var(X)cov(X,X)=var(X)
  2. cov(X,Y)=cov(Y,X)cov(X,Y)=cov(Y,X)cov(X,Y)=cov(Y,X)
  3. cov(X,Y)=cov(Y,X)cov(X,Y)=cov(Y,X)cov(X,Y)=co
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值