【Pytorch】11.损失函数与梯度下降

模型引入损失函数

主要介绍三种

  • L1Loss
  • MSELoss(平方损失函数)
  • CrossEntropyLoss(交叉熵损失函数)

L1Loss

在这里插入图片描述
在这里插入图片描述
对于训练得出的结果和实际的结果target的作差绝对值作为损失,分为两种情况

  • 求出的形式为平均值形式mean
  • 求出的形式为和的形式sum
    这个形式可以在reduction中指定,默认为平均值mean形式
    在这里插入图片描述
    我们可以看到其他的两个类的初始化参数已经废弃了,就reduction还在使用了
    在这里插入图片描述
    我们可以看到需要inputtarget同维度,使用方法为
loss = nn.L1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()

MSELoss

为平方损失函数
在这里插入图片描述
具体的定义与L1Loss相似,唯一的区别就是损失函数的计算变成了input和target差值的平方(L1是差值的绝对值)

CrossEntropyLoss

为交叉熵损失函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

具体的公式定义为
x[class]代表预测正确的概率class可以等同于我们之前的target

在这里插入图片描述
也分为平均值mean总和sum的方式
使用方法为

>>> loss = nn.CrossEntropyLoss()
>>> input = torch.randn(3, 5, requires_grad=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值