【Pytorch】【MacOS】14.m1芯片使用mps进行深度模型训练

读者要先自行安装python以及anaconda,并且配置pytorch环境

第一步 测试环境

import torch
# 判断macOS的版本是否支持
print(torch.backends.mps.is_available())
# 判断mps是否可用
print(torch.backends.mps.is_built())
  • 如果第一个语句为False,说明当前MacOS的版本不够,需要升级到12.3版本及以上,且安装了arm64原生Python
  • 如果第二个语句为Fasle,代表还没有安装nightly版本的Pytorch

第二步 安装nightly版本的Pytorch

conda install pytorch torchvision torchaudio -c pytorch-nightly

安装完成后使用

print(torch.backends.mps.is_built()
### PyTorchMPS 配置和使用教程 #### 1. 安装支持 MPSPyTorch 版本 为了能够在 Apple Silicon 设备上利用 Metal Performance Shaders (MPS),需要确保安装的是最新版本的 PyTorch,该版本已内置对 MPS 后端的支持。对于 macOS 用户来说,在 M1 或 M2 芯片上的 Mac 上可以通过 Conda 渠道轻松获取兼容版本。 ```bash conda install pytorch torchvision torchaudio pytorch-macos -c pytorch-nightly ``` 这条命令会从 `pytorch-nightly` 渠道下载并安装带有 MPS 支持的 PyTorch 及其依赖项[^1]。 #### 2. 检查 MPS 是否可用 一旦完成了上述软件包的安装之后,可以编写一小段测试代码来验证当前环境中是否启用了 MPS 加速功能: ```python import torch if not torch.backends.mps.is_available(): print("MPS is not available.") else: try: mps_device = torch.device('mps') test_tensor = torch.ones(3, device=mps_device) print(f"MPS is available! Test tensor on MPS: {test_tensor}") except Exception as e: print(f"Encountered an error while trying to use MPS: {e}") ``` 这段脚本尝试创建一个位于 MPS 设备上的张量对象,并打印出来以确认一切正常工作。 #### 3.模型迁移到 MPS 进行推理或训练 当准备就绪后,只需修改现有代码中定义设备的部分,指定 `'mps'` 作为目标硬件平台即可让整个程序运行于加速模式下: ```python device = "mps" if torch.backends.mps.is_available() else "cpu" model.to(device) for data in dataloader: inputs, labels = data[0].to(device), data[1].to(device) outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() ``` 通过这种方式,可以在保持原有逻辑不变的情况下充分利用苹果芯片的强大图形处理能力提升性能表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值