OpenCV人脸识别与对比

本代码仅以像素对比。以人脸特征对比,可以使用face_recognition开源库,参考https://blog.51cto.com/u_16175447/11246241 

import cv2
import numpy as np
import matplotlib.pyplot as plt

# 加载人脸识别模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

def detect_face(image_path):
    # 读取图像
    img = cv2.imread(image_path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # 检测人脸
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)

    if len(faces) == 0:
        print("没有检测到人脸")
        return None

    # 提取人脸区域
    (x, y, w, h) = faces[0]  # 只取第一张人脸
    face = img[y:y + h, x:x + w]
    return face

def compare_faces(face1, face2):
    # 将两个脸部图像调整为相同的大小
    face1 = cv2.resize(face1, (100, 100))
    face2 = cv2.resize(face2, (100, 100))

    # 计算差异
    difference = cv2.absdiff(face1, face2)
    result = np.sum(difference)

    # 根据差异值给出结果
    return result

# 主程序
if __name__ == "__main__":
    # 加载两张待对比的图片
    file1 = 'face_shenteng2.jpg'
    file2 = 'face_shenteng.jpg'

    face1 = detect_face(file1)
    face2 = detect_face(file2)

    # 展示原图
    plt.subplot(2, 2, 1)
    plt.title('Face1')
    # plt.title('Face3')
    plt.imshow(cv2.cvtColor(cv2.imread(file1), cv2.COLOR_BGR2RGB))

    plt.subplot(2, 2, 2)
    plt.title('Face2')
    # plt.title('Face4')
    plt.imshow(cv2.cvtColor(cv2.imread(file2), cv2.COLOR_BGR2RGB))

    # 展示人脸
    plt.subplot(2, 2, 3)
    plt.imshow(cv2.cvtColor(face1, cv2.COLOR_BGR2RGB))

    plt.subplot(2, 2, 4)
    plt.imshow(cv2.cvtColor(face2, cv2.COLOR_BGR2RGB))

    plt.show()

    if face1 is not None and face2 is not None:
        result_diff = compare_faces(face1, face2)
        print(f'两张人脸的对比结果差异值: {result_diff}')
        if result_diff < 100000:  # 可以根据需要调整阈值
            print("人脸匹配")
        else:
            print("人脸不匹配")
haarcascade_frontalface_default.xml可以从 GitHub数据文件夹 下载。

运行结果

两张人脸的对比结果差异值: 1769757
人脸不匹配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值