MySQL-connector升级后,应用本地缓存自动刷新遇到的一个Timestamp坑

在MySQL-connector升级到8版本后,由于时间戳精度提升,导致与MySQL5.7数据库中秒级时间比较时出现问题,影响了应用中基于Timestamp的缓存刷新机制。通过对比测试和日志分析,发现Quartz定时任务中的时间判断逻辑不再适用,因为数据库中的lastUpdTime始终小于 connector 捕获的毫秒级nextQryTimeBaseLine,从而无法正确刷新缓存。解决方案是调整业务逻辑,避免依赖于特定时间比较来刷新缓存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MySQL-connector升级后,应用本地缓存自动刷新遇到的一个Timestamp坑

阅读引导

1、MySQL-connector升级后与MySQL进行协商获取的Timestamp的精度发生了变化

2、quartz框架定时任务刷新缓存,导致缓存永远无法刷新的问题。

最近组织内升级JDK版本,具体来说,就是JDK7升级到JDK8。

本来以为是很简单的事情,除非用到底层内容,否则正常情况下升级JDK不会有影响,而排查了一些所有系统以后,大部分都是调用的spring等开源框架的API,并没有涉及到JDK底层。

除了一个网关应用到了底层JCE,也相应做了特殊处理。

但是,一个老系统却发现了一个奇怪的问题。

1

问题现象:数据库参数刷新后不生效。

首先介绍一下,系统的的一部分参数是从数据库直接刷新到缓存中去的。

由于配置参数经常发生变化,因此设计了缓存定时刷新机制。

简单来说,系统使用了ConcurrentHashMap来存储参数,使用了Quartz定时框架调度任务查询数据库,将增量刷新参数刷新到缓存中去。

其中关键点,也是我们今天的主角,就是增量刷新的判断逻辑:当前时间。

也就是说,缓存刷新逻辑中,存储了一个当前时间字段,用这个时间戳去和数据库中的参数lastUpdTime比较。

Timestamp nextQryTimeBaseLine =

<think>嗯,用户之前让我帮忙设计一个天气预报数据采集程序,用Python编写,包括数据存储到数据库。现在他问的是如何使用mysql.connector库连接和操作MySQL数据库,将数据导入其中。之前我给的例子用的是SQLite,现在需要切换到MySQL。 首先,我需要确认用户的需求。他们可能已经熟悉了SQLite,但现在项目需要升级MySQL,因为MySQL更适合生产环境,支持更复杂的操作和更高的并发。用户可能已经完成了数据采集和清洗部分,现在需要将存储模块从SQLite迁移到MySQL。 接下来,我应该考虑用户可能遇到的问题。比如,如何安装mysql.connector,连接字符串的参数,MySQL和SQLite在语法上的差异,比如AUTO_INCREMENT在MySQL中的使用,以及数据类型的不同,比如DATETIME和VARCHAR的长度。还有权限问题,用户是否有权限在MySQL中创建数据库和表。 然后,我需要提供清晰的步骤。首先是安装mysql.connector库,使用pip安装。然后修改数据库连接部分的代码,使用mysql.connector.connect,并提供正确的host、user、password、database参数。注意可能需要先创建数据库,比如用CREATE DATABASE IF NOT EXISTS。 然后,表结构可能需要调整,比如将AUTOINCREMENT改为AUTO_INCREMENT,并指定ENGINE=InnoDB等。在插入数据时,注意占位符的变化,SQLite使用?,而MySQL使用%s,虽然mysql.connector也支持?,但为了统一,示例中使用%s更常见。 另外,异常处理也很重要,需要捕获mysql.connector的Error,并在出现问题时回滚事务。用户可能还需要考虑数据库的持久连接,或者使用连接池,但在简单示例中可能不需要。 此外,用户可能需要设置权限,确保MySQL用户有创建表和插入数据的权限。如果遇到访问被拒绝的错误,需要检查用户的host和权限设置。 最后,扩展部分可以提到使用ORM如SQLAlchemy,或者异步操作,但用户当前的问题比较基础,所以保持示例简单明了,直接回答如何连接和操作即可。确保代码示例正确,并测试过,避免拼写错误,比如端口号3306是否正确,以及是否需要SSL连接等。</think>我将为您详细说明使用Python的`mysql.connector`库操作MySQL数据库的全流程,包含代码实现和关键技术要点: --- ### 一、环境准备 ```bash # 安装必要库 pip install mysql-connector-python ``` --- ### 二、数据库连接配置 ```python import mysql.connector from mysql.connector import Error DB_CONFIG = { "host": "localhost", "user": "your_username", "password": "your_password", "database": "weather_db", "port": 3306, "charset": "utf8mb4" } ``` --- ### 三、核心操作实现 #### 1. 创建数据库表 ```python def create_table(): create_table_sql = """ CREATE TABLE IF NOT EXISTS weather_data ( id INT AUTO_INCREMENT PRIMARY KEY, timestamp DATETIME NOT NULL, source VARCHAR(20) NOT NULL, temperature FLOAT, humidity INT, wind_speed FLOAT, pressure INT, rainfall FLOAT, INDEX timestamp_index (timestamp) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 """ try: conn = mysql.connector.connect(**DB_CONFIG) cursor = conn.cursor() cursor.execute(create_table_sql) print("表创建成功") except Error as e: print(f"数据库错误: {e}") finally: if conn.is_connected(): cursor.close() conn.close() ``` #### 2. 数据插入操作(带防注入示例) ```python def insert_data(data): insert_sql = """ INSERT INTO weather_data (timestamp, source, temperature, humidity, wind_speed, pressure, rainfall) VALUES (%s, %s, %s, %s, %s, %s, %s) """ try: conn = mysql.connector.connect(**DB_CONFIG) cursor = conn.cursor() # 执行参数化查询 cursor.execute(insert_sql, ( data['timestamp'], data['source'], data['temperature'], data['humidity'], data['wind_speed'], data['pressure'], data.get('rainfall', 0) )) conn.commit() print(f"插入成功,ID: {cursor.lastrowid}") except Error as e: print(f"插入失败: {e}") conn.rollback() finally: if conn.is_connected(): cursor.close() conn.close() ``` --- ### 四、高级功能实现 #### 1. 批量插入优化 ```python def bulk_insert(data_list): insert_sql = """ INSERT INTO weather_data (timestamp, source, temperature, humidity, wind_speed, pressure, rainfall) VALUES (%s, %s, %s, %s, %s, %s, %s) """ try: conn = mysql.connector.connect(**DB_CONFIG) cursor = conn.cursor() # 转换为元组列表 values = [( d['timestamp'], d['source'], d['temperature'], d['humidity'], d['wind_speed'], d['pressure'], d.get('rainfall', 0) ) for d in data_list] cursor.executemany(insert_sql, values) conn.commit() print(f"批量插入 {cursor.rowcount} 条数据") except Error as e: print(f"批量插入失败: {e}") conn.rollback() finally: if conn.is_connected(): cursor.close() conn.close() ``` --- ### 五、连接池管理(生产环境推荐) ```python from mysql.connector import pooling # 创建连接池 db_pool = pooling.MySQLConnectionPool( pool_name="weather_pool", pool_size=5, **DB_CONFIG ) def get_connection(): return db_pool.get_connection() ``` --- ### 六、常见问题解决方案 1. **中文乱码问题** 确保数据库、表和连接都使用`utf8mb4`字符集 2. **连接超时处理** ```python DB_CONFIG["connection_timeout"] = 10 # 设置超时时间 ``` 3. **SSL连接配置** ```python DB_CONFIG.update({ "ssl_ca": "/path/to/server-ca.pem", "ssl_cert": "/path/to/client-cert.pem", "ssl_key": "/path/to/client-key.pem" }) ``` --- ### 七、操作验证示例 ```python # 测试数据样例 test_data = { "timestamp": "2023-08-20 14:00:00", "source": "openweathermap", "temperature": 26.5, "humidity": 65, "wind_speed": 3.2, "pressure": 1013, "rainfall": 0.5 } # 执行测试 create_table() insert_data(test_data) ``` --- ### 八、性能优化建议 1. 使用`executemany()`进行批量插入时,每批数据量控制在500-1000条 2. 高频操作使用连接池管理 3. 对时间戳字段建立索引 4. 启用数据库的查询缓存功能 5. 定期执行`ANALYZE TABLE`优化统计信息 --- 如果需要更详细的MySQL配置说明或遇到具体问题(如远程连接配置、存储过程调用等),可以告知具体需求方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值