常用激活函数

本文详细解读了激活函数的作用,比较了sigmoid、ReLU、tanh、ELU等常见类型,探讨了它们的输出区间、导数特性、优缺点及适用场景,为理解神经网络深层结构提供关键知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

激活函数的目的:增加神经网络的非线性(只有线性的情况下网络的表达能力有限)

激活函数sigmoidrelutanhELU
输出区间(0,1)(0,∞\infty)(-1,1)(-1,∞\infty)
导数区间(0,14\frac{1}{4}41)0,1[0,1)(0,1]
优点平滑;易求导;计算量小;缓解梯度弥散和梯度爆炸问题;避免过拟合原点对称能够缓解梯度弥散,稀疏性使得对输入变化或噪声更鲁棒
缺点计算量大;存在梯度消失问题没有完全解决梯度弥散,神经元有可能一旦死亡就不再复活存在梯度消失问题_
是否0均值接近于0

sigmoid
σ(x)=11+e−x, \sigma(x) = \frac{1}{1+e^{-x}}, σ(x)=1+ex1,
σ′(x)=ex(1+e−x)2=σ(x)[1−σ(x)] \sigma^{'}(x) = \frac{e^x}{(1+e^{-x})^2}=\sigma(x)[1-\sigma(x)] σ(x)=(1+ex)2ex=σ(x)[1σ(x)]

Relu
Relu(x)={0,x<0x,x≥0 Relu(x)=\left\{ \begin{aligned} 0, x<0 \\ x, x \geq 0 \end{aligned} \right. Relu(x)={0,x<0x,x0

tanh
tanh(x)=ex−e−xex+e−x tanh(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} tanh(x)=ex+exexex

tanh′(x)=1−tanh2(x) tanh^{' }(x)= 1-tanh^2(x) tanh(x)=1tanh2(x)

ELU(x)={α(ex−1),x<0x,x≥0 ELU(x)=\left\{ \begin{aligned} \alpha (e^x-1), x<0 \\ x, x \geq 0 \end{aligned} \right. ELU(x)={α(ex1),x<0x,x0
【ELU】Exponential Linear Unit 指数线性单元

其他激活函数
(1)softsign(x)=x∣x∣+1 (1)softsign(x)=\frac{x}{|x|+1} 1softsign(x)=x+1x

(2)hard_sigmoid(x)={0,x<−2.50.2x+0.5,−2.5≤x≤2.50,x>2.5 (2)hard\_sigmoid(x)=\left\{ \begin{aligned} 0, x < -2.5 \\ 0.2x+0.5, -2.5\leq x\leq 2.5 \\ 0,x >2.5 \end{aligned} \right. 2hard_sigmoid(x)=0,x<2.50.2x+0.5,2.5x2.50,x>2.5
【hard_sigmoid(x)】sigmoid的改进,计算量较少,但不平滑;

(3)LeakRelu(x)={αx,x<0x,x≥0 (3)LeakRelu(x)=\left\{ \begin{aligned} \alpha x, x<0 \\ x, x \geq 0 \end{aligned} \right. 3LeakRelu(x)={αx,x<0x,x0
【LeakRelu】Relu的改进版,LeakyReLU在神经元未激活时,它仍允许赋予一个很小的梯度,避免ReLU死掉的问题;这里的α\alphaα是一个不可学习的固定值;
【PRelu】Relu的改进版,公式和LeakRelu是一样的,但PRelu的α\alphaα是一个可学习的数组,每个x对应一个α\alphaα

(4)softplus(x)=log(ex+1) (4)softplus(x)=log(e^x+1) 4softplus(x)=log(ex+1)
【softplus】relu的平滑版;

(4)softmax(x)=exi∑j=0nxj (4)softmax(x)=\frac{e^{x_i}}{\sum^n_{j=0}x_j} 4softmax(x)=j=0nxjexi
【softplus】relu的平滑版;

参考文献:
https://zhuanlan.zhihu.com/p/46255482

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值