Flink1.8进阶:Flink1.8批量Sink到HBase

该博客探讨了在Flink1.8中提高从Kafka消费数据并批量写入HBase的效率问题。通过使用自定义的时间窗口countWindowAll,实现了每100条数据才进行一次HBase的批量插入,以提升整体性能。文章主要关注核心代码,展示了如何自定义RichSinkFunction,并详细解释了open(), invoke()和close()这三个关键方法的实现。" 113605583,9290553,使用cookie和session进行反反爬实践,"['爬虫技术', '网络协议', '数据提取', '网站登录', '安全爬取']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现背景:   

 消费Kafka数据写入HBase时,单条处理效率太低。需要批量插入hbase,这里自定义时间窗口countWindowAll 实现100条hbase插入一次Hbase

前面我就不写了 直接上核心代码

/*每10秒一个处理窗口*/
DataStream<List<Put>> putList = filterData.countWindowAll(Constants.windowCount).apply(new AllWindowFunction<String, List<Put>, GlobalWindow>() {
    @Override
    public void apply(GlobalWindow window, Iterable<String> message, Collector<List<Put>> out) throws Exception {
        List<Put> putList=new ArrayList<Put>();
        for (String value : message)
        {
            String rowKey=value.replace("::","_");
            Put put = new Put(Bytes.toBytes(rowKey.toString()));
            String[] column=value.split("::");
            for (int i = 0; i <
如果你想使用 Flink 批量将数据写入 HBase,可以自定义一个 HBaseSinkFunction。下面是一个简单的示例: ```java public class HBaseBatchSinkFunction extends RichSinkFunction<List<Tuple2<String, String>>> { private transient Connection connection; private transient BufferedMutator bufferedMutator; @Override public void open(Configuration parameters) throws Exception { Configuration config = HBaseConfiguration.create(); config.set("hbase.zookeeper.quorum", "localhost"); config.set("hbase.zookeeper.property.clientPort", "2181"); config.set("zookeeper.znode.parent", "/hbase"); config.set("hbase.client.write.buffer", "10000000"); config.set("hbase.client.retries.number", "3"); connection = ConnectionFactory.createConnection(config); TableName tableName = TableName.valueOf("my_table"); BufferedMutatorParams params = new BufferedMutatorParams(tableName); params.writeBufferSize(1024 * 1024); bufferedMutator = connection.getBufferedMutator(params); } @Override public void invoke(List<Tuple2<String, String>> values, Context context) throws Exception { List<Put> puts = new ArrayList<>(); for (Tuple2<String, String> value : values) { Put put = new Put(Bytes.toBytes(value.f0)); put.addColumn(Bytes.toBytes("my_cf"), Bytes.toBytes("my_col"), Bytes.toBytes(value.f1)); puts.add(put); } bufferedMutator.mutate(puts); } @Override public void close() throws Exception { if (bufferedMutator != null) { bufferedMutator.flush(); bufferedMutator.close(); } if (connection != null) { connection.close(); } } } ``` 在这个自定义的 HBaseSinkFunction 中,我们使用 BufferedMutator 批量写入数据。在 open() 方法中,我们获取 HBase 连接和缓冲器。在 invoke() 方法中,我们将数据转换为 Put 对象,并添加到缓冲器中。最后,在 close() 方法中,我们刷新缓冲器并关闭连接。 在你的 Flink 程序中,你可以使用这个自定义的 HBaseSinkFunction,例如: ```java DataStream<Tuple2<String, String>> dataStream = ...; dataStream.addSink(new HBaseBatchSinkFunction()); ``` 这样,你就可以批量将数据写入 HBase 了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卡搜偶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值