自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 【基于CNN-ConvLSTM的轴承剩余使用寿命预测方法】

本文价绍了基于CNN-ConvLSTM的轴承剩余使用寿命预测方法,通过PHM2012轴承数据集对其进行实验验证。并提供完整代码。

2025-05-05 23:29:29 1013 2

原创 【基于卷积长短期记忆神经网络(ConvLSTM)的轴承剩余使用寿命预测方法(附代码)】

本文介绍了一种基于ConvLSTM的轴承剩余寿命预测方法。详细介绍了ConvLSTM的工作原理以及代码实现。最后通过PHM2012轴承数据集进行实验验证,并提供主要代码。

2025-05-04 21:40:00 1171 2

原创 【基于CNN-LSTM的轴承剩余使用寿命预测方法(附代码】

本文介绍了一种基于CNN-LSTM的轴承剩余使用寿命预测方法,简要讲述了七工作原理,并提供了,主要代码。最后通过PHM2012轴承数据集进行实验验证。

2025-05-04 13:16:07 1266 2

原创 【基于CNN-GRU的轴承剩余寿命预测(附代码)】

主要介绍了一种基于CNN-GRU的轴承剩余使用寿命预测模型。首先对CNN-GRU预测模型的工作原理进行详细介绍。然后,使用PHM2012轴承数据集对该模型进行实验分析,并提供了模型代码及训练过程代码

2025-05-03 21:26:45 1155 1

原创 【基于TCN的轴承剩余使用寿命预测】

介绍了一种基于TCN的轴承剩余使用寿命预测方法,并简要提供了相关代码。最后,通过PHM2012轴承数据集对所提模型进行实验验证

2025-05-02 19:40:35 949 2

原创 【基于卷积神经网络(CNN)的轴承剩余寿命预测实例】

本文使用基于卷积神经网络(CNN)的深度学习预测模型,对PHM2012轴承数据集提供的轴承进行剩余使用寿命(RUL)预测。

2025-05-01 21:20:52 1003 2

基于CNN-ConvLSTM的轴承剩余使用收预测方法完整代码【数据+数据处理+模型+模型训练+预测结果输出】

简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。 其他问题+V: SUN-AO-YUN

2025-05-05

基于TCN的轴承剩余使用寿命预测完整代码【数据+数据处理+模型+训练+预测结果输出】

模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。购买后,提供数据集及相关程序,只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。

2025-05-05

基于ConvLSTM的轴承剩余使用寿命预测方法完整代码【数据+数据处理+模型+模型训练+预测结果输出】

简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。

2025-05-05

基于CNN-LSTM的轴承剩余使用寿命预测方法完整代码【数据+数据处理+模型+模型训练+预测结果输出】

简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。

2025-05-05

基于CNN-GRU的轴承剩余使用寿命预测完整代码【数据+数据处理+模型+训练函数+预测结果输出函数】

简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。

2025-05-05

基于卷积神经网络(CNN)的轴承剩余寿命预测实例(数据处理+训练+预测完整代码)

模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。

2025-05-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除