【基于CNN-ConvLSTM的轴承剩余使用寿命预测方法】


前言

今天介绍CNN系最后一个轴承剩余使用寿命预测模型—CNN-ConvLSTM。前面的文章分别介绍了基于卷积神经网络(CNN)的轴承剩余寿命预测实例以及基于卷积长短期记忆神经网络(ConvLSTM)的轴承剩余使用寿命预测方法(附代码)。本文将二者结合再一起。首先使用卷积神经网络提取浅层特征,去除冗余信息。然后使用ConvLSTM对浅层特征包含的时序退化信息进行挖掘、学习。最后,使用全连接层输出轴承的剩余使用寿命。本文使用PHM2012轴承数据集验证所提模型的预测效果。


提示:模型基于python语言编写,运行整体程序需要pandas、numpy、Matplotlib等第三方库

一、预测模型介绍

1.1 模型工作流程介绍

预测模型的整体工作流程如下图所示。首先,通过1D CNN对原始振动信号进行浅层特征提取。然后,将输入样本特征的形状塑造为[batch_size, seq_len, channels, n_features]。接下来,使用ConvLSTM挖掘输入样本所包含轴承时空退化信息,构建时序依赖关系模型。最后,使用全连接层输出该样本对应的轴承剩余使用寿命(RUL)。
在这里插入图片描述

1.2 预测模型代码实现

class Predictor(nn.Module):
    def __init__(self,in_channels,out_channels,kernel_size,
                 c_in_channels, c_out_channels, c_kernel_size,
                 in_features,out_features):
        super(Predictor, self).__init__()
        self.cnn = CNN_NET(in_channels,out_channels,kernel_size)
        self.convlstm = ConvLSTM_NET(c_in_channels, c_out_channels, c_kernel_size)
        self.fc1 = nn.Linear(in_features, out_features[0])
        self.fc2 = nn.Linear(out_features[0], out_features[1])
        self.fc3 = nn.Linear(out_features[1], out_features[2])
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
        self.dropout = nn.Dropout(0.5)
        self.flattener = nn.Flatten()
    def forward(self, x):
        batch_size, seq_len, in_channels, n_features = x.shape
        x = self.cnn(x)
        _, out_channels, n_features = x.shape
        x = x.view(batch_size, seq_len, out_channels, n_features)
        hidden_state_of_all_steps, last_hidden = self.convlstm(x)
        x = self.flattener(last_hidden)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.dropout(x)
        x = self.fc3(x)
        x = self.sigmoid(x)
        return x

二、实验验证

2.1 数据处理&实验设计

基于卷积神经网络(CNN)的轴承剩余寿命预测实例

2.2 实验代码实现

# 主训练函数
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from matplotlib import pyplot as plt
from dataprocess import load_data,data_preprocess,Sequential_Dataset
from help import Predictor,train_epoch,test_epoch,model_of_predict,sort_results
device = torch.device("cuda:0")
data_name = "PHM2012"
data_direction = "horiz"
SEQ_LEN = 8
train_bearing = ["Bearing1_2.pkl", "Bearing1_3.pkl", "Bearing1_4.pkl", "Bearing1_5.pkl", "Bearing1_6.pkl", "Bearing1_7.pkl"]

train_data = []
train_bearings = []
for sub_bearing in train_bearing:
    bearing_name = sub_bearing
    data_h, data_v = load_data(data_name, bearing_name)
    step_data = data_preprocess(data_h, data_v, data_name=data_name, data_direction=data_direction, normalize=False)
    train_data.append(step_data)
    train_bearings.append(bearing_name)
    print("训练轴承:", train_bearings)
train_samples = []
the_number_of_train_samples = 0
for sub_train_data in train_data:
    num_steps = sub_train_data["x"].shape[0]
    num_samples = num_steps - SEQ_LEN + 1
    train_indices = np.random.permutation(num_samples)
    train_indices = train_indices[0:]
    train_sample = Sequential_Dataset(sub_train_data, train_indices, SEQ_LEN)
    train_samples.append(train_sample)
    the_number_of_train_samples += num_samples
print(f"训练样本总数:{the_number_of_train_samples}")
from torch.utils.data import ConcatDataset
from torch.utils.data import DataLoader
from torch.utils.data import random_split

train_batch_size = 16
val_batch_size = 16
train_combined_dataset = ConcatDataset(train_samples)  
train_ratio = 0.8
train_size = int(train_ratio * len(train_combined_dataset))
val_size = len(train_combined_dataset) - train_size
train_dataset, val_dataset = random_split(train_combined_dataset, [train_size, val_size])
train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
print(len(train_dataloader))
val_dataloader = DataLoader(val_dataset, batch_size=val_batch_size, shuffle=True)
print(len(val_dataloader))

in_channels = 1   # if data_direction == "horiz" or "vert"   else 2
out_channels = [4,8,16]
kernel_size = [3,3,3]
c_out_channels= [16,16,16]
c_kernel_size = [(3,),(3,),(3,)]
in_features = int(c_out_channels[-1]*2560/(4**len(out_channels)))
out_features = [320,64,1]
model = Predictor(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                  c_in_channels=out_channels[-1],c_out_channels=c_out_channels,c_kernel_size=c_kernel_size,
                  in_features=in_features,out_features=out_features).to(device)
criterion = nn.MSELoss(reduction='sum')  
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, amsgrad=False)
multistep_lr_sch = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20, 40, 50], gamma=0.1, last_epoch=-1,verbose = False)

num_epochs = 100
losses = []
best_val_loss = 1
for epoch in range(num_epochs):
    train_loss = train_epoch(model, train_dataloader, criterion, optimizer, device)
    val_loss = test_epoch(model, val_dataloader, criterion, device)
    # 打印训练损失
    print( f'{epoch + 1}/{num_epochs}: train_loss = {train_loss:.4f}, val_loss = {val_loss:.4f}, lr = {current_lr}, best_val_loss = {best_val_loss}')
    losses.append([train_loss, val_loss])
plt.plot(range(len(losses)), [l[0] for l in losses], 'b.-', label='train loss')
plt.plot(range(len(losses)), [l[1] for l in losses], 'r.-', label='val loss')
plt.legend()
plt.show()



2.3 实验记录与训练结果

2.3.1 训练集、验证集损失下降曲线

在这里插入图片描述

2.3.2 对部分轴承预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


总结

已经完成了CNN、TCN、CNN-GRU、CNN-LSTM、ConvLSTM以及CNN-ConvLSTM的轴承剩余使用寿命预测模型的介绍。具体代码已经上传,大家可按需下载。
基于CNN的轴承剩余使用寿命预测实例
基于CNN-GRU的轴承剩余使用寿命预测方法
基于ConvLSTM的轴承剩余使用寿命预测方法完整代码
基于CNN-LSTM的轴承剩余使用寿命预测方法完整代码
基于TCN的轴承剩余使用寿命预测方法
基于CNN-ConvLSTM的轴承剩余使用收预测方法完整代码【数据+数据处理+模型+模型训练+预测结果输出

代码均为作者自己编写,安全无毒。有问题可在评论区讨论或私聊。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值