什么是AI模型训练?到底在训练什么?今天带你一次性彻底弄懂!

我们始终对AI展现出的多元能力感到惊叹——它不仅能够撰写文章、创作绘画、编写程序,如今更具备了视频生成的功能。从宏观视角审视,一个完整的通用AI系统架构可参照下图所示:在系统中最为关键的模型网关环节,会对已完成训练的模型进行调用,以此实现与用户数据的交互,并将最终结果反馈给用户。正因如此,输出结果的优劣直接取决于模型的能力水准。也正因为如此,2024年的市场上演了千模大战的激烈景象,各类模型的泛化能力正以日新月异的速度实现着跨越式提升。

img

如何让你的模型,在各项能力上超越对手,不管是在应用的感官上,还是行业的各类指标上都胜人半子,模型的训练被提到了前所未有的高度。深度求索在短短两个月内使用英伟达H800 GPU数据中心就训练出了DeepSeek-V3模型,花费了约558万美元。其训练费用相比OpenAI的GPT-4等目前全球主流的大模型要少得多的多,DeepSeek“AI界拼多多”也由此得名。

img

所有的AI大厂都在卷训练,从质量、价格、性能(每秒生成的Token数以及首个Token生成时间)、上下文窗口等多方面来评测训练的成果。那么问题来了:

1、什么是AI模型训练?

AI模型训练实质上是利用数据驱动的方法,使人工智能系统能够从经验数据中自主学习,并针对特定任务进行高效预测、分类或内容生成。此过程的核心在于通过优化算法调整模型内部参数(例如,在神经网络中的权重偏置),以最小化模型输出与实际目标值之间的误差或损失函数。这样做的目的是为了提高模型的泛化能力,使其在未见过的数据集上也能保持出色的性能。

2、AI模型训练在训练什么?

我们来看一个图片识别的训练过程,怎么把一张狗的图片识别并输出“Dog”这个单词的。

img

这张图展示了一个典型的卷积神经网络(Convolutional Neural Network, CNN)如何处理图像识别任务的过程。

1. 输入层 (Input Layer): 图像被分解成像素,每个像素值作为输入传递给网络。左侧的圆形区域展示了输入图像,这里是一只狗的图像。

2. 第一层 (Layer 1):这一层的主要任务是检测像素值。通过这一层,网络开始学习图像的基本特征,如边缘和纹理。每个节点代表一个神经元,这些神经元通过权重连接到输入层的像素值。

3. 第二层 (L2):在这一层,网络开始识别图像中的边缘。通过多个过滤器(或称为卷积核),网络能够捕捉到图像中不同方向的边缘信息。 这些边缘信息对于后续的特征提取至关重要。

4. 第三层 (L3):在这一层,网络进一步组合边缘信息,识别更复杂的特征组合。例如,某些特定的边缘组合可能对应于图像中的特定部分或形状。这一过程逐步抽象出图像的更高层次特征

5. 第四层 (L4):到了这一层,网络已经能够识别出更高级别的特征,如特定的形状或物体的部分。这些特征通常与图像中的具体对象相关联。网络通过这些特征来构建对图像内容的理解。

6. 第五层 (L5):最后一层进一步组合前一层识别出的特征,最终形成对整个图像的综合理解。这一层的输出用于进行最终的分类决策。

7. 输出层 (Output Layer):输出层给出最终的分类结果。在这个例子中,网络识别出输入图像为“狗”。输出层通常使用softmax函数将神经元的输出转化为概率分布,从而确定最有可能的类别。

整体过程的关键点包括:

特征提取: 从低级特征(如边缘)到高级特征(如特定形状或物体部分)的逐步提取。

层级结构: 每一层都负责不同的特征提取任务,从像素值到最终的分类决策。这些神经元通过连接权重相互作用形成复杂的非线性映射关系,从而能够捕捉输入数据中的深层次特征。每一层神经元执行特定的变换操作,并将结果传递给下一层,直到最终产生对任务有用的输出。

权重调整: 通过训练,网络不断调整各层之间的权重,以优化特征提取和分类性能。

这种分层结构使得CNN能够有效地处理图像数据,基于特征和权重,最终实现较高可信度的识别结果。经过不断地验证(训练的一个环节),添加更多会比在每层中添加更多神经元获得更多的性能提升,所以如果把上面的5层结构增加到100层,将更大程度提高识别的可信度,当然,资源的消耗(算力)也将几何倍的增长。

假设上面这个模型我们拿来测试人脸的识别,看看识别的准确性上怎么样,我们大概率会得到下面的结果

img

这依然是一个5层的结构,最后一层给出最终的分类结果。在这个例子中,网络识别出输入图像为“马冬梅”。输出层通常使用softmax函数将神经元的输出转化为概率分布,从而确定最有可能的类别。在测试过程中,我们不需要调整权重,但可以计算预测结果与实际标签之间的损失(如果已知真实标签,比如我们知道图片是马冬梅,看看模型能不能识别正确),通过损失函数用于评估模型的预测准确性,虽然在测试阶段不进行权重更新,但可以通过反向传播计算每个权重对损失的贡献(即梯度),从而来分析模型的性能

下面简要说明权重和偏置的修改过程,以及它们在训练中的作用。

1、前向传播(Forward Propagation) 输入数据通过神经网络进行前向传播,经过每一层的计算后,最终得出预测输出。定义这神经网络模型的前向传播过程,即网络训练的forward部分,张量数据输入神经网络模型,模型输出具体的预测值,类似 y=fun(x)。

2、计算损失(Loss Function) 前向传播之后,网络会根据模型的输出 a 和真实标签 y 计算损失(误差),对应上图是输出的识别结果与真实值之间比较,例如是三个字都错了,还是只错了 1 个 。

3、反向传播(Backpropagation) 需要将误差反向传递到网络的每一层,需要计算每一层网络的误差,这个过程是通过链式法则(Chain Rule)实现的。神经网络通常包含多层,每一层的输出都依赖于前一层的输出,因此在反向传播时,我们需要逐层计算每一层的误差 。

4、更新权重和偏置(Gradient Descent) 根据优化器(Optimizer)的学习策略,小幅通过反向计算图更新网络模型中的各个权重参数的梯度,即反向传播的过程(backward propagation 或 backwardpass)。先看其梯度的 grad 正负,再根据正负方向对原参数值加减一定比例的梯度值。假设更新公式为 w = w − n ∗ g r a d w = w - n*grad w=wngrad, 如果梯度值为正,网络模型的权重参数就会减小;如果梯度值为负,网络模型的权重参数值就会增大。

5、训练迭代(Epochs) 训练过程中,神经网络会多次进行前向传播、计算损失、反向传播误差并更新权重和偏置。每一次完整的前向传播和反向传播过程叫做一个“epoch”。通常,训练过程会经历多个 epoch,直到模型收敛到较低的损失值,或者达到预设的最大迭代次数,这也是为什么训练过程比较长。

img

训练原理涉及到使用大量的标注数据样本(狗的图片)作为输入,通过前向传播计算当前模型配置下的输出误差,再利用反向传播算法根据误差梯度调整各层之间的连接权重。这个迭代过程持续进行,直到找到一组最优或接近最优的参数设置,使得模型在验证集上的表现达到我们满意的水平。为了避免过拟合等常见问题,还会采用正则化、dropout等多种技术手段来增强模型的稳定性和泛化能力。总之,整个训练过程是一个精密设计的参数搜索过程,最终实现模型在指定任务上的最佳性能。

3、如何保证模型训练的质量?

互联网大厂天然具备海量数据的优势,AI公司在互联网上获取大量训练数据,但是,现如今的互联网本就充斥着各种各样用AI生产出来的数据。保守估计,到2026年,90%的互联网数据将由AI生成。这种 “污染” 使得从训练数据集中彻底过滤AI输出将会变得越来越困难。

要确保AI模型在行业的领先地位,高质量的数据是必不可少的,九尺高台始于垒土,高质量的数据是成功训练模型的基础。产品要确保训练的数据集具有代表性、准确性和完整性。在程序进行数据处理时需要提前进行清洗,包括去除噪声、处理缺失值、异常值等。同步在训练过程中,加强对数据进行标准化或归一化处理,使得不同特征之间具有可比性,这有助于加速模型收敛并提高性能。此外,还需要进行数据增强(如旋转、缩放、裁剪等)以增加数据多样性,特别是在图像处理任务中,将会给你带来意想不到的收获。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值