平时用大模型聊天、问问题的时候,你可能遇到过这种情况:明明问的是个挺具体的事儿,它却答得模棱两可,甚至说些不着边际的话。这不是大模型故意忽悠你,主要是它脑子里的 “知识” 有保质期,而且对一些冷门、专业的内容储备不足。不过别担心,现在有个叫 RAG 的技术,专门帮大模型解决这个难题。今天咱就用大白话,把 RAG 是什么、咋工作的说明白,保证你看完就懂。
一、RAG 到底解决了什么问题?
大语言模型有两个致命伤:
-
知识过时:训练数据停留在某个时间点(比如 GPT-4 截止到 2023 年),新事件、新政策一概不知;
-
胡说八道:对不懂的问题可能 “一本正经地编答案”(业内叫 “幻觉”)。
RAG 的核心作用就是 “补漏”:
-
用外部知识库(比如公司文档、行业报告、新闻库)补充最新信息;
-
让模型回答时有 “依据”,减少瞎编的概率。
打个比方:你问 “公司新考勤制度”,模型自己不知道,但 RAG 能立刻从公司内网搜出制度文件,再整理成口语化的回答 —— 这就是 RAG 的价值。
二、RAG 的工作原理:3 步走流程
RAG 的过程像极了 “学生写论文”:先查资料,再整合信息,最后写出答案。
第一步:把资料 “喂” 进 “图书馆”(预处理)
你得先准备好 “知识库”(比如 PDF、Word、网页等),但模型看不懂原始文件,需要先 “拆碎重组”:
-
拆分成小块:比如把一本 300 页的书切成 1000 个小段落(避免信息太长);
-
转成数字密码:用 “嵌入模型” 把每个段落变成一串数字(叫 “向量”),就像给每段话贴了个 “特征标签”,方便后续快速匹配。
这些处理好的 “数字密码” 会存在专门的 “向量数据库” 里,相当于建了一个 “带智能索引的图书馆”。
第二步:用户提问,“图书馆” 找资料(检索)
当你提问时(比如 “怎么申请公司年假”),RAG 会做两件事:
-
把你的问题也转成 “数字密码”;
-
去向量数据库里找 “密码最像” 的段落(比如和 “年假申请” 相关的制度条款)。
这一步就像你在图书馆用关键词搜书,只不过 RAG 用 “数字密码相似度” 来判断相关性,比关键词更精准。
第三步:拿着资料写答案(生成)
找到相关资料后,RAG 会把 “问题 + 资料” 一起丢给大语言模型,说:“参考这些内容,用大白话回答用户。”
比如资料里写着 “年假需提前 3 天在 OA 系统申请,累计满 1 年可休 5 天”,模型就会整理成:“申请年假要提前 3 天在公司 OA 系统操作,工作满 1 年能休 5 天哦。”
三、RAG 的核心模块:3 个关键角色
-
知识库:存放原始资料的 “仓库”,可以是本地文件、数据库、网页链接等;
-
检索引擎:负责 “找资料” 的 “ librarian”,核心是向量数据库(比如 Milvus、Pinecone);
-
生成模型:负责 “写答案” 的 “写手”,也就是大语言模型(比如 GPT-3.5、LLaMA)。
四、为什么需要 RAG?举 3 个例子
-
公司客服:员工问 “报销流程”,RAG 直接调取最新报销制度,不用人工回复;
-
学生写论文:问 “2023 年人工智能发展趋势”,RAG 搜最新论文和新闻,帮模型生成有依据的内容;
-
医生查病例:输入 “糖尿病最新治疗方案”,RAG 检索近 3 年医学期刊,辅助医生决策。
五、总结:RAG 就是 “带外挂的 AI”
普通大语言模型像 “闭卷考试”,全靠记忆力;RAG 像 “开卷考试”,可以翻书找答案。它不改变模型本身,却能让模型的回答更准、更新、更可信 —— 这就是 RAG 的魔力。
下次再听到有人说 “用 RAG 优化模型”,你就知道:哦,就是给 AI 配了个 “实时搜题神器” 嘛!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。