一文读懂:大语言模型 (LLM) 是如何理解人类问题的

一直好奇大语言模型是如何理解人类问题的,然后给出正确的响应,最近学习总结一下。

划重点: 嵌入技术:将语言的复杂性转化为机器可高效处理的数学框架,同时保留语义本质。通过这种从符号到向量的转化,大型语言模型获得了理解词语与概念间关系的能力,从而实现高级语言处理。

具体流程如下:

在这里插入图片描述

注:本文中的“标记/单元” 可以理解为 “token”

一、分词:将文本输入转化为模型可读单元

在大型语言模型开始处理问题之前,必须先将文本分解为模型可理解的单元(token)。这一关键的第一步为所有后续处理过程奠定了基础。

分解成tokens

在这里插入图片描述

分词是大型语言模型处理文本的关键第一步,其核心是将输入文本分解为称为"标记"的较小单元(token),使模型能够理解和分析。对于英语,一个标记通常对应0.75个词或约四个字符。

二、分词工作原理

不同大型语言模型采用多种分词方法将文本划分为可处理token,主流技术包括字节对编码(BPE)、WordPiece和SentencePiece。这些方法将词语切分为有意义的子成分:例如"tokenization"可能被分解为"token"和"ization"两个标记,因每个子词都参与构成完整词义的理解。
在这里插入图片描述

大型语言模型的效能往往取决于其分词策略。子词分词方法通过将未知单词拆解为已知子词成分,可显著减少未登录词错误。

三、标记预算管理

大型语言模型的上下文长度限制范围从几千至128,000标记。有效利用标记的关键在于优先处理相关信息并消除冗余内容。

在这里插入图片描述

语言差异性
不同语言的分词方式存在差异。具有复杂形态结构的语言在表达相同内容时,可能比其他语言需要更多标记。

标记效率提升

在这里插入图片描述

标记效率可通过以下方式提升:将信息按重要性降序组织;使用简洁且语义清晰的语言;实施提示压缩技术;
提交前预估标记用量。

理解分词机制是有效运用大型语言模型的基础,尤其在成本管控与上下文长度内信息最大化方面。文本的分词方式直接影响提示可容纳的信息量及其处理成本。

四、嵌入流程:从标记到向量表示

当文本被分解为标记后,大型语言模型需将这些离散符号转化为可处理的数学形式。此处嵌入技术将语言转换为数值空间,使语义能够被操作处理。

在这里插入图片描述

嵌入构成大型语言模型语言建模的基础。文本处理时,首先被分解为模型可理解的标记——包括词语、子词或字符。这些标记随后转化为称为嵌入的数值向量,用于捕捉文本元素间的语义关系。

嵌入流程将离散的词语单元(标记)映射为数值向量。例如"tokenization"一词可分解为"token"和"ization",因每个子词都参与完整词义的理解。

从词语到数学表征
在LLM推理的预填充阶段,输入标记被转化为向量嵌入——即模型可处理的数值表征。这些嵌入捕捉每个标记的语义本质,辅以位置编码提供序列顺序信息。

每个标记的嵌入向量与训练习得的权重矩阵相乘,通过线性投影生成查询向量、键向量和值向量。该数学表征使模型能运用计算技术处理语言。

向量空间中的嵌入可视化
嵌入将词语定位在高维空间中,相似概念在此空间内距离更近。这种几何结构使模型能够以数学方式(而非符号方式)推理概念间的关系。

在这里插入图片描述

对于含生僻词汇或带前后缀词语的复杂文本,子词表征可将这些元素进一步分解。当标准上下文嵌入技术可能不足时,该方法在处理未登录词和形态丰富语言时尤为有效。

嵌入技术的强大能力在于:将语言的复杂性转化为机器可高效处理的数学框架,同时保留语义本质。通过这种从符号到向量的转化,大型语言模型获得了理解词语与概念间关系的能力,从而实现高级语言处理。

五、Transformer架构与注意力机制

当标记转化为嵌入后,模型需处理这些表征以理解其相互关系。Transformer架构——尤其是其注意力机制——使大型语言模型能够捕捉这些复杂关系。

Transformer核心组件
该架构构成现代大型语言模型(LLM)的核心架构。其核心在于自注意力机制,可同步分析所有标记间的关系。这种并行处理能力赋予Transformer理解上下文的卓越性能。

在这里插入图片描述

关键转换步骤:

  1. 将标记转化为数值向量(嵌入)
  2. 通过注意力机制处理嵌入
  3. 计算三个矩阵:查询矩阵、键矩阵、值矩阵
  4. 应用数学运算确定关系

注意力机制的运作原理是从输入数据计算三个矩阵:查询矩阵、键矩阵和值矩阵。该方法借鉴数据库操作原理——用户通过发出与键匹配的查询来检索对应数值。

在这里插入图片描述

六、总结

大型语言模型从提示到响应的全流程涉及多个精密协同的运作机制。理解这些技术——分词、嵌入、注意力及推理模式——对开发AI驱动产品具有核心指导价值。

此处呈现的技术知识可直接转化为实践优势:优化标记用量可降低成本并最大化上下文利用率;基于推理模式设计提示能获得更可靠精准的输出;思维链提示与元提示等先进技术,能实现以往超越AI能力的复杂推理任务。

七、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值