虚假的岗位增涨
AI岗位不是没增长,而是长在了非常上游的位置,比如:
基础模型团队: 设计Transformer结构LLM scaling、multi-modal alignment.这些都是大厂核心组在做,而且后面还会持续做,原先的A16小龙在这儿可能都快死了。
Infra团队: 负责算力调度、并行训练框架multi-GPU memory优化,面试可能一问就是你有没有写cuda,以及干卡调度的经验,这不是在放屁嘛。
Al product团队: 基于大模型构建RAG系统、agent平台、对话插件系统等,拿着公司的私有数据finetune model去解决具体落地问题。
在国外这些人叫appliedscientists,讲道理我感觉这个岗位应该算是目前最好找到的工作了。
可能在现在这个时代,能有1篇主会甚至只有一个finding或者short paper都有机会上岸。
这些岗位共同特征是: 不仅要会写代码,更要能理解系统结构、知道怎么落地、怎么调研设计、怎么平衡latency和效果、怎么scale到上线。
它需要的不是“编程技能’而是“抽象+架构+调度+决策”能力。而这些能力恰恰不是一两年内速成的,通常得:
211/985计算机本科,硕士,甚至博士的才会有这样的需求,而且如果你不是核心组的phd,这些都可能不一定能碰得到。
大厂infra或算法团队实习(硕导和博导暑假不放人直接寄)
能在极快的节奏下自学并实现SOTA模型(很多岗位直接要求你复现LLaMA3级别的paper,对模型架构对于面试者要求很高)。
我知道字节的seed团队对于LLM岗位的要求就是能手搓GRPO,DPO,PPO那些,并且还让你说出很多非常细节的东西,xAl,Meta的GenAl组也会要求手推diffusion的,code-面就是1-2个小时。
所以不是不给你岗位,而是岗位根本不设在你这个level上。
钱烧到哪儿去了?
你看到的“几十亿融资”或“大模型烧钱”,主要花在了下面这几块:
基础投入,包括GPU采购(A100/H100/GB200),数据标注、过滤、对齐;训练框架、分布式优化器的搭建。
从Google DeepMind/Meta FAIR 挖人年包百万美金起,招顶会一作的PhD做tokenizer、optimizer、alignment工程研究前沿试错,做10种MOE结构、100组超参组合、跑上万小时试出来的最优策略。
每失败一次就是几十万美金成本,成功的团队吃下整个蛋。这不是大众化工程,这是资本在打AI时代的“高维战争”。
所以你会看到,基础研究岗位的确在爆发但要求高到离谱;中低端岗位在萎缩,因为AI反而在自动化掉原本需要人力的部分。
集中的寡头
我们常以为AI浪潮像“工业革命”“互联网浪潮”那样,能带来全面的就业增长,但这一波更像是“技术寡头崛起”:
模型能力集中在少数几家(OpenAl、Google、Meta、Anthropic)Infra平台集中(NVIDIA、Azure、AWS)应用生态被少数大公司定义(Copilot, Gemini, Claude)
而中小公司(包括这波误以为自己能吃到AI风头去做这个方向,想吃红利的,都极其有可能成为牺牲品,我没在说现在的AI几小龙),他们不是没有AI愿景,而是烧不起训练费用,靠开源玩点边角料。
不是不想雇人而是自己都在用GPT写代码,没那么多初级岗位需求。所以你看到的,不是“岗位减少而是“岗位更集中、更高门槛、更加封闭”一些startup。
比如说做数字人的,就会发现技术发展实在太快了,他们找的人才刚学会GAN,就出现的image diffusion,然后是video diffusion,公司里那些卡可能连inference都养不起,拿上被新的公司拿着新的技术超越
普通CS学生,被“技术民主”的幻觉误导了
很多学CS的学生一直有个信念: “技术是最公平的,掌握了能力就有出路。”但AI时代打碎了这个幻觉。
技术不是不民主了,而是大模型让上层变得更强,下层工作变得更自动化:然后那些能用LLM做系统整合的人更吃香,只懂调包的人更边缘;项目不需要10个写模块的人,只要2个能驾驭整个pipeline的人。
普通CS学生现在面临的困境,不是“没有岗位”,而是“没有为你设岗位”。我很看衰SDE和数据分析的岗位。
如果你尝试过用Claude,GPT40以及copilot那些工具就会发现他们比你更加熟悉基础的语法,上手一种语言更加迅速往往原先你要写几十个小时才能完成的代码,他们可能在你手上几轮迭代就差不多完成了。
也就是半个小时,1个小时的事儿。说到底,AI浪潮没有带来“中间层”的广泛就业,只让“顶层更顶,底层更卷”。
那么如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。