1、告别“码农”,迎接“智能编排师”:AI Agent是什么?
在过去,我们写代码,是给机器下达精确指令。而在AI Agent时代,我们更像是“智能编排师”。
AI Agent,可以理解为一个拥有自主思考、决策、执行能力的智能体。它能理解你的目标(Goal),然后像人一样,自己拆解任务、调用工具(Tools)、执行计划,并根据环境反馈不断调整,直到达成目标。
一个典型的AI Agent工作流如下:
- 感知 (Perception):通过API、数据库、传感器等获取环境信息。
- 思考 (Thinking):基于大语言模型(LLM)进行推理、规划和决策。
- 行动 (Action):调用外部API、执行代码、发送邮件等。
- 学习 (Learning):从执行结果中学习,优化未来的决策。
对于程序员来说,这意味着我们不再需要为每一个细节编写逻辑,而是要设计一个足够聪明的“数字员工”,让它为我们工作。
2、 月入十万的机会在哪里?3个高价值的Agent创业方向
打造一个能赚钱的AI Agent,关键在于找到高价值、可重复、流程化的场景。以下是3个被验证过的有效方向:
方向一:营销自动化Agent
- 痛点:中小企业市场预算有限,内容生产、渠道分发、潜客挖掘等工作耗时耗力。
Agent能力:
-
内容创作Agent:根据关键词,自动生成博客文章、社交媒体帖子、广告文案。
-
全渠道分发Agent:将内容一键分发到微信公众号、知乎、B站、小红书等平台。
-
潜客挖掘Agent:监控社交媒体和行业论坛,发现潜在客户并自动进行初步接触。
-
商业模式:按月订阅(SaaS),或按效果付费(CPA)。
方向二:企业流程自动化(RPA)Agent
- 痛点:企业内部存在大量重复性、规则性的工作,如财务对账、HR招聘筛选、数据录入等。
Agent能力:
-
财务Agent:自动下载银行流水,与发票进行核对,生成财务报表。
-
HR Agent:自动筛选简历,根据岗位要求进行初步匹配,并安排面试。
-
数据处理Agent:自动从PDF、图片中提取信息,录入到指定的业务系统。
-
商业模式:项目制(为特定企业定制),或提供标准化的SaaS服务。
方向三:个人助理Agent
- 痛点:信息过载,个人时间管理混乱,需要一个全天候的智能助理。
Agent能力:
-
信息聚合Agent:根据你的兴趣,自动抓取、筛选、总结全网信息,生成每日简报。
-
智能日程Agent:自动管理你的日历,协调会议,提醒重要事项。
-
旅行规划Agent:只需告诉它目的地和预算,它就能自动预订机票、酒店,并规划好行程。
-
商业模式:高级功能付费订阅,或与第三方服务(如酒店、机票)合作赚取佣金。
3、四步打造你的第一个“自动化公司”
从一个想法到一个月入十万的Agent,你需要经历以下四个阶段:
第一步:MVP(最小可行产品)- 从一个“轮子”开始
不要一开始就追求完美。选择一个最核心、最痛点的功能,用最简单的技术栈实现它。
技术选型:
-
LLM:OpenAI API (GPT-4/GPT-3.5) 是最成熟的选择,国内也可以考虑Kimi、文心一言等。
-
Agent框架:LangChain、AutoGen、CrewAI等开源框架能帮你快速搭建原型。
-
工具调用:熟悉如何让Agent调用外部API,这是实现价值的关键。
-
目标:用1-2周时间,做出一个能解决自己某个小问题的Agent。例如,一个每天自动帮你总结行业新闻的Agent。
第二步:找到10个“天使用户”
你的第一个Agent可能很粗糙,但没关系。找到10个愿意陪你一起成长的“天使用户”。
- 去哪里找:技术社区(V2EX, GitHub)、垂直领域的社群、你身边的朋友。
- 做什么:免费给他们使用,但要求他们提供详细的反馈。他们的痛点,就是你产品迭代的方向。
- 关键:不要害怕被批评。早期用户的反馈是无价之宝。
第三步:产品化与商业化
当你的Agent能稳定地为10个用户创造价值时,就可以考虑产品化了。
- 打磨产品:优化UI/UX,提升稳定性和性能。
- 定价策略:设计清晰的订阅套餐,例如免费版、专业版、企业版。
- 支付渠道:接入微信支付、支付宝等。
- 营销推广:在技术博客、公众号、行业论坛分享你的产品和故事,吸引第一批付费用户。
第四步:规模化与自动化
当你的用户量增长,你需要用“自动化”来管理“自动化公司”。
- 客户支持Agent:用Agent来回答用户的常见问题,处理简单的售后请求。
- 监控运维Agent:用Agent来监控服务的运行状态,出现问题时自动告警甚至尝试修复。
- 数据分析Agent:用Agent来分析用户行为数据,为你提供产品优化的建议。
最终,你的公司可能只有你一个人,但背后却有无数个AI Agent在7x24小时不间断地工作。
4、案例研究:他们是如何做到的?
- 案例一:Devin - 被誉为第一个“AI程序员”,虽然争议不断,但它展示了Agent完成复杂软件工程任务的潜力。
- 案例二:国内某营销SaaS - 一个小团队,开发了针对小红书、抖音的营销Agent,帮助品牌方自动生成爆款内容,年营收千万。
5、总结:现在就是最好的时机
AI Agent的技术浪潮才刚刚开始,市场格局未定,到处都是机会。对于我们程序员来说,这可能是继移动互联网之后,最大的一次结构性机会。
不要再满足于做一个“增删改查”的螺丝钉。从今天起,学习如何“编排”AI,让AI为你工作。你的第一个“自动化公司”,可能就从解决身边的一个小问题开始。
6、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。