什么是AI赋能?简单来说,就是依靠人工智能技术,为现有的各类系统“加持”,让它们变得更强大。经过这样的“加持”,能帮助我们提高做事效率、降低成本,在做决策时更有把握,使用起来也更便捷,最终还能增加收益、创造更多价值。但要明白,AI赋能并不是要夺走人类的工作,而是想和人类合作,一起让生活变得更美好。
AI赋能并非要替代人类,而是要与人类协同合作,共同打造更美好的未来。本文将从多个角度来阐述“AI赋能”究竟赋予了哪些能力。
1、 技术层面:AI 核心能力
从技术角度分析,人工智能之所以能够赋能,关键在于它拥有以下几类核心能力:
-
感知能力:借助传感器、摄像头、麦克风等设备,人工智能可以感知周边环境,收集图像、声音、文本等各类信息。这让机器得以具备类似人类的“看”“听”“读”的能力,为后续的信息理解与决策制定打下基础。比如在自动驾驶领域,正是依靠人工智能的感知能力,车辆才能识别交通信号灯、行人、其他车辆等,进而做出合理的驾驶操作。
-
认知能力:人工智能能够对获取到的信息进行理解、推理、判断并做出决策。这一能力涉及自然语言处理(NLP)、知识图谱、机器学习等多种技术。以自然语言处理技术为例,它能让人工智能理解人类的语言,进而完成机器翻译、文本摘要、情感分析等任务;而知识图谱则为人工智能提供了结构化的知识储备,使其可以进行更复杂的推理和决策。
-
行动能力:基于认知得出的结果,人工智能能够控制物理设备或软件系统执行相应的动作。这包括机器人控制、流程自动化、智能推荐等应用场景。例如在工业自动化领域,人工智能可操控机器人完成复杂的装配、焊接等工作;在电商领域,它能依据用户的浏览记录和购买行为,为用户提供个性化的商品推荐。
-
学习能力:人工智能可以通过学习持续提升自身的能力,其学习方式包括监督学习、无监督学习、强化学习等。举例来说,通过大量的训练数据,人工智能在图像识别方面的准确率会不断提高;而通过与环境的交互,它能学会更高效地完成特定任务。
2、 应用层面:AI 赋能的行业实践
AI 赋能的应用场景非常广泛,几乎涵盖了所有行业。以下列举几个典型的应用领域:
-
制造业: AI 赋能智能制造,提高生产效率、降低成本、提升产品质量。例如,通过 AI 驱动的质量检测系统,可以自动识别产品缺陷;通过 AI 优化的生产排程,可以提高设备利用率。
-
医疗健康: AI 赋能精准医疗,提高诊断准确率、缩短治疗周期、改善患者体验。例如,通过 AI 辅助诊断系统,可以帮助医生更快更准确地诊断疾病;通过 AI 驱动的药物研发,可以加速新药的上市。
-
金融服务: AI 赋能智能金融,提高风险控制能力、优化客户服务、提升运营效率。例如,通过 AI 驱动的反欺诈系统,可以有效识别和阻止金融欺诈行为;通过 AI 驱动的智能客服,可以为客户提供7x24小时的在线服务。
-
零售业: AI 赋能智慧零售,提高销售额、优化库存管理、提升客户满意度。例如,通过 AI 驱动的个性化推荐系统,可以提高商品的点击率和转化率;通过 AI 驱动的库存预测系统,可以优化库存水平,减少库存积压。
-
交通运输: AI 赋能智能交通,提高交通效率、降低交通事故、改善出行体验。例如,通过 AI 驱动的自动驾驶系统,可以减少人为因素导致的交通事故;通过 AI 优化的交通信号控制系统,可以缓解交通拥堵。
3、 AI 赋能:究竟赋什么能?
AI赋能,简单来说,就是利用人工智能技术来增强或扩展现有系统、流程、产品或服务的能力。这种增强或扩展可以体现在以下几个方面:
-
自动化能力: AI可以自动化重复性、规则明确的任务,例如数据录入、报告生成、客户服务等。通过自动化,可以显著提高效率,降低成本,并释放人力资源,使其能够专注于更具创造性和战略性的工作。例如,RPA(机器人流程自动化)结合AI技术,可以实现更智能的流程自动化,处理更复杂的业务场景。
-
预测能力: AI,尤其是机器学习算法,能够从大量数据中学习,并预测未来的趋势和结果。这在金融、零售、医疗等领域具有重要价值。例如,AI可以预测股票价格的波动、预测客户的购买行为、预测疾病的发生风险等。
-
优化能力: AI可以优化复杂的系统和流程,例如供应链管理、物流配送、生产计划等。通过优化,可以提高资源利用率,降低运营成本,并提高整体效率。例如,AI可以优化物流路线,减少运输时间和成本;AI可以优化生产计划,提高生产效率。
-
决策支持能力: AI可以为决策者提供更全面、更准确的信息,帮助他们做出更明智的决策。例如,AI可以分析市场数据,为企业制定营销策略提供建议;AI可以分析医疗数据,为医生诊断疾病提供辅助。
-
个性化能力: AI可以根据用户的个性化需求,提供定制化的产品和服务。例如,AI可以根据用户的浏览历史和购买记录,推荐个性化的商品;AI可以根据用户的健康状况,提供个性化的健康建议。
-
创造能力: 随着AI技术的不断发展,AI也开始具备一定的创造能力。例如,AI可以生成文本、图像、音乐等内容,甚至可以设计产品。虽然AI的创造能力还处于发展阶段,但已经展现出巨大的潜力。
4、 AI赋能带来的变革
AI赋能带来的变革是深远的,主要体现在以下几个方面:
- 效率提升: AI自动化重复性任务,释放人力资源,提高工作效率。
- 决策优化: AI通过分析大量数据,提供更准确、更客观的决策依据。
- 创新加速: AI能够发现新的模式和关联,促进产品和服务的创新。
- 个性化体验: AI能够根据用户需求提供个性化的产品和服务。
- 成本降低: AI优化流程,减少浪费,降低运营成本。
5、 AI赋能面临的挑战
尽管AI赋能潜力巨大,但也面临着一些挑战:
-
数据质量和可用性: AI算法需要大量高质量的数据进行训练,数据质量差或数据不足会影响AI的性能。
-
算法偏见: 如果训练数据存在偏见,AI算法也会产生偏见,导致不公平或歧视性的结果。
-
技术人才短缺: AI领域需要专业的技术人才,人才短缺限制了AI的应用和发展。
-
伦理和社会问题: AI的应用引发了伦理和社会问题,如隐私保护、就业影响、算法透明度等。
-
安全风险: AI系统可能存在安全漏洞,容易受到攻击,导致数据泄露或系统瘫痪。
-
可解释性问题: 一些复杂的AI算法(如深度学习)难以解释其决策过程,这限制了其在某些领域的应用。
6、 AI赋能的未来发展趋势
随着AI智能体爆发,未来更多智能体将从从被动问答转向自主决策,具备任务分解、工具调用与跨系统执行能力。例如法律文书自动生成、供应链实时优化等场景落地,预计2028年全球33%企业软件将集成智能体,替代40%标准化人力任务(如客服、基础编程)。
AI不再仅是工具,而是数字文明的“新操作系统”。其未来将取决于——技术突破的速度、社会共识的宽度、人类驾驭智慧的深度。
总结
AI 赋能是一个复杂而深刻的议题,它不仅仅是技术层面的突破,更是对产业和社会的全面变革。理解 AI 赋能的内涵和外延,有助于我们更好地把握未来发展的机遇,应对可能面临的挑战,共同创造AI更加美好的未来。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。