在当今的 AI 热潮中,新的术语和概念层出不穷,让人眼花缭乱。其中,MCP、RAG 和 Agent 这三个术语频繁出现在各种技术讨论和行业报道中,成为了 AI 领域的热门话题。那么,它们究竟是什么意思?对 AI 的发展又有着怎样的影响呢?本文将为你一一解读。
第⼀、核⼼概念
1、RAG(检索增强⽣成)
✍️ 定义: RAG 将信息检索与⽂本⽣成相结合,创造更准确、信息更充分的回应。
功能: 从知识库中检索相关⽂档,并⽤它们增强⽣成过程。
主要优势: 使 AI 回应建⽴在事实信息基础上,减少幻觉(hallucinations)。
组成部分:
- 知识库:存储⼤量⽂档和数据。
- 检索组件:包括嵌⼊模型和向量数据库,⽤于⾼效检索相关⽂档。
- ⽣成模型:基于语⾔模型,⽣成最终的⽂本回应。
2、Agent(智能体)
✍️ 定义:⼀种能够感知、决策和⾏动以实现特定⽬标的⾃主 AI 系统。
功能: 基于观察和⽬标在环境中采取⾏动。
核⼼组件:
- 感知模块:⽤于感知环境状态。
- 推理/决策模块:基于感知信息进⾏推理和决策。
- ⼯具使⽤能⼒:调⽤外部⼯具和资源以完成任务。
例⼦:
- 客⼾服务智能体
- 数据分析智能体
- 复杂任务处理智能体
3、MCP(模型上下⽂协议)
✍️ 定义:⼀种连接 AI 助⼿与外部系统的开放标准,使模型能够获取上下⽂信息。
功能: 实现 AI 模型与外部数据源和⼯具的标准化通信。
主要优势: 提供统⼀接⼝,简化 AI 与各类系统的集成。
组成部分:
- 客⼾端-服务器架构:⽀持多个客⼾端与服务器之间的通信。
- 标准化通信协议:确保不同系统之间的兼容性。
- ⼯具调⽤接⼝:允许 AI 模型调⽤外部⼯具和资源。
第二、核心概念间的关联
1、RAG 与 Agent 的关联
- RAG 是 Agent 的知识构成部分。
- RAG 通常作为智能体(Agent)内部的知识组件,为决策提供事实依据。
- Agent 借助 RAG 获取相关信息,进而做出更合理的决策。
当 RAG 与 Agent 联合运用(即 Agentic RAG)时,Agent 的决策能力与 RAG 的知识能力会相互促进,使整体性能得到提升。
2、Agent 与 MCP 的关联
- MCP 是 Agent 与外部交互的接口。
- MCP 为 Agent 提供了与外部系统交互的标准化接口。
- Agent 可通过 MCP 调用工具、获取数据,以此拓展自身的行动能力。
- MCP 简化了 Agent 与多种外部服务的集成过程,大幅提高了开发效率。
3、MCP 与 RAG 的关联
- MCP 是 RAG 获取外部知识的通道。
- MCP 能够作为 RAG 系统获取外部知识的途径。
- 通过 MCP 连接的数据源可以让 RAG 的知识库更加丰富。
- MCP 对 RAG 系统访问各类数据仓库的方式进行了标准化,保障了数据的一致性和可访问性。
4、实际应用
在一个完整的 AI 系统里,这些元素相互配合,实现高效、智能的任务处理:
- Agent 通过 MCP 与外部系统相连:Agent 利用 MCP 提供的标准化接口,和外部数据源及工具进行交互。
- Agent 借助 RAG 检索并整合相关知识:Agent 通过 RAG 访问知识库,查找与任务相关的事实信息,为决策提供支撑。
- 系统融合决策能力与事实信息处理复杂任务:Agent 将检索到的知识与自身的决策能力相结合,处理复杂任务,生成准确、可信的回应。
这种整合方式打造出的 AI 系统,比任何单一组件都更强大、可靠且适应性强,能够理解上下文、检索相关信息,并采取恰当行动完成任务。
第三、生活实例
- RAG 如同一个认真的学生:试想学生写论文时,遇到不懂的内容,不会随意编造,而是去图书馆查阅资料,找到相关书籍,再依据这些可靠信息来撰写论文。RAG 就是 AI 具备的“查资料”能力。
- Agent 就像一个私人助理:假设你对助理说:“帮我安排下周去北京的商务旅行。”优秀的助理会自行决定需要预订机票、酒店、安排会议时间等,并独立完成这些任务。Agent 就是 AI 拥有的“理解目标并自主行动”的能力。
- MCP 类似一个万能转接头:你或许有过这样的经历,带着国内的充电器去国外,发现插不进当地的插座,这时就需要一个转接头。MCP 就是 AI 的“转接头”,让 AI 能够连接并使用各种外部工具和数据源。
1、设想自己完成一项复杂任务的过程
- 你需要知识(和 RAG 类似):在做任何事情之前,都要获取相关的信息和知识。
- 你需要决策能力(和 Agent 类似):有了知识后,要根据这些信息做出决策和规划。
- 你需要使用工具的能力(和 MCP 类似):最后,需要运用各种工具来执行这些决策。
例如,烹饪一道新菜:你会查阅菜谱(RAG),根据实际情况调整做法(Agent),使用各种厨具(通过 MCP 连接)。
2、引发思考
- 如果 AI 只有 RAG 能力(只会查资料),却不会思考和使用工具:它能回答一些基于事实的问题,但无法完成复杂任务。比如,它可以告诉你昨天的股市情况,却不能帮你制定投资策略。
- 如果 AI 只能进行思考决策(Agent),却没有可靠的信息来源(RAG):它可能会做出一些基于假设的决策,而这些决策可能不准确。比如,它可以帮你策划旅行,但可能会忽略一些重要细节。
- 没有标准接口(MCP),每个工具都需要特殊的连接方式:这会给 AI 使用工具带来极大挑战,增加开发和维护的复杂性。比如,每次需要使用一个新工具,都要重新编写代码来适配。
你能想象这三种能力完美结合的 AI 能帮你完成哪些任务吗?
3、你拥有一个超级智能助手,这个助手具备三种超能力
- 超级记忆(RAG):无论你问什么,它都能快速找到准确信息,不会凭空想象或编造答案。比如你问“昨天的股市怎么样”,它会立刻找出真实数据告诉你。
- 独立思考(Agent):你只需告诉它你想要的结果,它就能自己思考并决定如何一步步实现。比如你说“帮我策划一次旅行”,它会自动考虑预算、时间、景点等因素并给出完整计划。
- 万能连接器(MCP):它能够使用各种外部工具和系统。需要发邮件、预订机票、计算复杂数学问题?它都能连接到合适的工具来完成。
当这三种能力结合在一起,你就拥有了一个既知识渊博,又能独立思考,还能使用各种工具的全能助手。这就是现代 AI 系统通过整合 RAG、Agent 和 MCP 所追求的目标。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。