如今,以ChatGPT、Bard为代表的AI对话工具热度居高不下,它们与众多语言模型一同,在日新月异的AI技术领域展开激烈角逐。这些智能工具正借助浏览器、社交软件等各类平台,悄然融入我们的日常工作与生活——无论是辅助撰写文档、解答知识疑问,还是提供创意灵感,都能看到它们的身影。
但AI行业的技术迭代速度远超想象,新模型、新功能层出不穷,想要紧跟行业步伐并非易事。这也使得企业和个人在选择使用哪款工具、是否对其进行投资时,常常陷入犹豫。而想要在这场技术浪潮中保持领先,关键就在于精准洞察技术趋势。当你理解了GPT与BERT的运作原理后,便能在瞬息万变的语言模型格局中稳步前行。
1、改变格局的核心:Transformer架构
新一代强大语言模型的诞生,始于2017年的一次关键性突破。当时,一篇名为《Attention is All You Need》的里程碑式论文,提出了具有革命性意义的AI架构——Transformer。这种由多层Transformer堆叠而成的编码器-解码器结构,凭借其独特的优势,迅速在自然语言处理(NLP)领域掀起热潮,成为众多主流语言模型的核心基础。
图 1: (a) 在编码器—解码器架构中,输入序列首先被编码为状态向量,然后用于解码输出序列;(b) Transformer 层,以及编码器和解码器模块,均由多层 Transformer 堆叠构成。
Transformer架构的创新性,主要体现在其独特的注意力机制和高效的并行处理能力上,这也让它与传统的卷积神经网络(CNN)和循环长短期记忆网络(LSTM)形成了鲜明区别。传统的LSTM需要逐词处理文本序列,处理速度较慢,且容易出现长序列信息“遗忘”的问题;而Transformer能对数据序列进行并行处理,大幅提升了运算效率,同时通过注意力层模拟人脑聚焦关键信息的方式,让模型能更精准地捕捉文本中词与词之间的关联。
比如在处理“小明在公园和小红一起放风筝”这句话时,注意力机制能让模型清晰识别出“小明”“小红”与“放风筝”“公园”之间的关系,避免因序列过长导致的语义理解偏差。这种机制不仅提升了长序列处理的效率,还让并行架构能充分发挥图形处理器(GPU)的性能,为后续大规模语言模型的训练奠定了基础。
我们可以从下图中直观看到注意力层的激活情况:一个注意力层可包含多个注意力头,这些激活状态清晰展示了模型在训练过程中学习到的文本元素间的重要关联,正是这些关联让模型能深度理解语义。
2、信息摄取的两种关键模式:MLM与CLM
有了优秀的架构基础,如何高效训练语言建模任务成为新的关键问题。由于Transformer的注意力层会同时观察整个文本序列,若在训练过程中让模型提前“看到”输出结果,会严重削弱训练效果,导致模型无法真正学会语义理解与预测。为解决这一问题,业界逐渐形成了两种核心训练方法:
图 3:语言建模方法。(a) 掩码语言建模(Masked Language Modeling,MLM),预测序列中被隐藏的词;(b) 因果语言建模(Causal Language Modeling,CLM),预测序列中的下一个词。
其中,由Google提出的BERT模型采用掩码语言建模(MLM),由OpenAI研发的GPT模型则使用因果语言建模(CLM),这两种模式的出现,标志着NLP技术迎来了一次重大飞跃。这些模型的规模极为庞大,参数数量从数百万到数十亿不等,对算力的要求极高,只有具备强大技术实力和资源的企业才能承担其训练成本。
具体来看,MLM模式利用Transformer的编码器模块,在训练时随机对部分输入文本进行“遮蔽”(比如将“今天天气很[MASK]”中的“好”字遮蔽),然后让模型根据上下文信息去填补被遮蔽的内容,以此锻炼模型对文本整体语义的理解能力。而CLM模式则借助解码器中的掩码注意力层,让模型只能“看到”当前及之前的文本内容,进而预测下一个词(例如根据“清晨,阳光透过窗户洒进”预测下一个词可能是“房间”“客厅”等),有效避免了训练中“窥探”未来信息的问题。
不过,这两种模式并非完美无缺。MLM虽然能利用整个序列的信息进行语义理解,但在计算误差时,仅会基于被遮蔽的15%左右的文本内容,信息利用率相对较低;CLM能充分利用输出序列进行预测学习,却只能获取文本中的因果关系信息,无法同时兼顾上下文的双向语义关联。此外,无论是MLM还是CLM模型,若要应用到具体场景(如情感分析、机器翻译),都需要进行针对性的修改与微调,这无疑增加了技术落地的难度。
3、突破局限:AI泛化能力的进化之路
语言模型的核心优势之一,在于其能从有限的示例中学习规律,并将其泛化到新的场景中。但在实际应用中,仅依靠基础泛化能力远远不够——不同行业、不同任务对模型的需求差异巨大,传统的结构修改与末层微调方法,不仅耗时耗力,还缺乏可扩展性,难以满足商业化场景下快速适配的需求。
为解决这一痛点,研究人员和工程师开始探索新的方向:让模型学会“理解任务指令”。简单来说,就是向模型输入自然语言描述的任务要求及相关参数,让模型直接在输出序列中完成所需任务。这种思路的出现,催生了GPT-3、T5等具有里程碑意义的模型。
图 4: T5: Text-text framework
T5模型采用“文本到文本”的统一框架,将所有NLP任务(如文本摘要、情感分类)都转化为文本生成任务,例如把“判断‘这部电影很精彩’的情感倾向”转化为“情感分析:这部电影很精彩 → 正面”,极大地提升了模型的任务适配能力。
图 5:GPT-3 执行语言模型任务时使用的上下文学习设置
而GPT-3则进一步强化了“上下文学习”能力,用户无需对模型进行复杂微调,只需在输入中给出少量任务示例(如“例1:苹果→水果;例2:香蕉→水果;例3:胡萝卜→?”),模型就能根据上下文理解任务逻辑,并给出正确答案(“蔬菜”)。这种能力让模型的应用门槛大幅降低,也为其在更多场景的落地创造了可能。
随着这些技术改进的推进,语言模型领域逐渐呈现出一种新的发展规律:正如过去计算能力的增长由摩尔定律主导一样,语言模型的参数数量正以惊人的速度不断增加,从GPT-1的1.17亿参数,到GPT-3的1750亿参数,再到后续模型的持续突破,参数规模的扩张似乎已成为推动模型性能提升的重要驱动力之一。
图 6:语言模型参数数量随年份的演变。
但值得注意的是,模型规模的增大并不等同于其“听话能力”的提升。许多大型语言模型虽然能生成流畅的文本,却可能出现“一本正经地胡说八道”(生成虚假信息)、输出有害内容或无法准确理解用户真实需求的情况——也就是说,这些模型的输出与用户的实际意图尚未完全对齐,这也成为制约AI技术进一步普及的关键瓶颈。
4、精准适配需求:提示工程与模型优化的新方向
为了让模型更精准地满足用户需求,AI技术开始朝着“高精度对齐”的方向发展。在这一阶段,InstructGPT、LaMDA等技术应运而生,它们不再让语言模型直接对接用户意图,而是通过对人类反馈的学习和强化学习,不断优化模型表现,同时还引入了外部知识查询等新功能,进一步提升模型的实用性。
以LaMDA为例,它创新性地扩展了技术策略,能够与外部知识源进行交互。当面对需要最新信息或专业知识的问题时(如“2024年全球新能源汽车销量排名”),LaMDA不会仅凭自身训练数据回答,而是会主动查询外部信息检索系统,获取最新、最准确的数据后再生成回复,有效解决了传统模型“知识过时”“信息不全”的问题。
图 7:LaMDA 通过与外部信息检索系统交互来实现信息落地
从具体流程来看,LaMDA-Base模型会先对用户问题进行初步分析并返回一个基础答案,随后LaMDA-Research模型会基于这个基础答案,判断是否需要进一步补充信息。它会通过输出一个特定的首词(TS)来决定下一步行动——若TS指向外部检索系统,就会触发信息查询;若TS指向用户,则直接将优化后的答案反馈给用户,整个过程高效且灵活。
而InstructGPT则通过三步优化法,让模型更贴合人类指令:第一步是监督微调(SFT),由人类标注者按照指令完成任务,模型学习这些标注数据,初步建立“指令-响应”的对应关系;第二步是奖励模型(RM)训练,收集大量模型对同一指令的不同响应,由人类标注者对这些响应进行打分,模型基于打分结果学习“什么是好的响应”;第三步是基于奖励模型的近端策略优化(PPO)强化学习,让模型在生成响应时,不断根据奖励模型的反馈调整策略,最终生成更符合人类期望的内容。
图 8: InstructGPT 结构图.
正是InstructGPT与LaMDA分别为ChatGPT和Bard提供了核心技术支撑,让这两款AI对话代理工具具备了更优秀的交互能力。目前,ChatGPT和Bard都在持续优化,一方面通过技术手段减少有害内容的生成,另一方面通过引入实时数据、外部知识查询等功能,提升回答的真实性和准确性。
在应用层面,这些语言模型正与其他智能技术深度融合——比如与DALL·E 2、Imagen结合,实现“文本生成图像”;与MusicLM结合,实现“文本生成音乐”。这种跨领域的技术协同,正推动一个前所未有的AI应用时代加速到来,未来,我们或许还会看到更多“语言模型+X”的创新场景,为生活和工作带来更多可能。
5、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
6、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
7、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。