在大型语言模型(LLM)重塑人工智能应用生态的当下,检索增强生成(Retrieval-Augmented Generation,RAG)技术已成为突破 LLM 能力瓶颈的核心手段。它通过打通 LLM 与外部知识库的连接,不仅弥补了模型训练数据“时效性滞后”的缺陷,更从根源上降低了 LLM 生成内容时的“幻觉”风险,成为金融、医疗、法律等专业领域落地 AI 应用的关键支撑。
但技术的迭代从未停滞。从早期以“检索-生成”为核心的传统 RAG,到如今融合智能体(Agent)思想的 Agentic RAG(智能体式 RAG),RAG 系统正从“被动响应”向“主动决策”进化。本文将从技术架构、工作流程、实战表现三个维度,深度对比两种 RAG 范式的差异,解析 Agentic RAG 如何通过“智能体赋能”,让 LLM 具备自主规划与问题解决能力。
1 、传统 RAG:线性流程下的“高效知识搬运工”
传统 RAG 是 LLM 与外部知识结合的“初代方案”,其核心优势在于架构简洁、响应快速,至今仍是低复杂度场景的优选方案。
一、传统 RAG 的核心架构与工作逻辑
传统 RAG 的本质是“先检索、后生成”的线性流程,所有环节按固定顺序执行,无需额外决策判断。其完整工作流程可拆解为四个核心步骤:
1. 知识库预处理:离线完成的“知识编码”
首先将业务场景中的外部文档(如产品手册、法规条文、历史案例等)通过嵌入模型(Embedding Model) 转化为计算机可理解的高维向量。这些向量会被批量存储到向量数据库中,并建立索引——这一步通常在系统上线前离线完成,目的是为后续快速检索奠定基础,避免实时处理大量文档导致的延迟。
2. 用户查询编码:统一“语义语言”
当用户输入查询(如“某产品的保修政策是什么?”)时,系统会使用与知识库编码相同的嵌入模型,将自然语言查询转化为对应的向量。只有确保“查询向量”与“文档向量”来自同一模型,才能保证后续相似性计算的准确性。
3. 相似性检索:精准定位“相关知识”
系统将生成的查询向量输入向量数据库,通过余弦相似度、欧氏距离等算法,快速筛选出与查询语义最匹配的若干条“相似文档片段”。这一步类似搜索引擎的“关键词匹配+语义理解”,但更聚焦于特定领域的专业知识。
4. 提示构建与内容生成:整合知识出结果
检索到的相似文档会作为“背景上下文”,与用户原始查询一起,按照固定格式拼接成 LLM 可识别的提示(Prompt),例如:“基于以下上下文回答问题:[上下文内容]。问题:[用户查询]”。最后,LLM 基于提示中的信息生成最终回答,确保输出内容与外部知识一致。
二、传统 RAG 的实战特性
核心优势:
- 架构简单,开发门槛低,只需搭建“嵌入模型+向量数据库+LLM”的基础链路即可落地;
- 流程线性无冗余,响应速度快,单轮问答 latency 通常可控制在 1-3 秒内;
- 适合处理“单跳、明确”的查询,如事实性问答(“2023 年某行业市场规模是多少?”)、规则查询(“员工报销的审批流程是什么?”)。
明显局限:
- 流程固化,无法处理“多跳推理”类问题(如“某公司的竞争对手近三年推出的新产品中,哪些技术指标优于该公司?”),因为这类问题需要多次检索不同维度的知识;
- 缺乏“自我纠错”能力:若检索到的文档存在错误或遗漏,LLM 会直接基于错误信息生成回答,导致“二次幻觉”;
- 工具依赖单一,仅能调用向量数据库,无法对接实时数据接口(如股票行情、天气数据)或结构化数据库(如 SQL 表)。
2、 Agentic RAG:智能体驱动的“自主问题解决者”
如果说传统 RAG 是“按流程办事的搬运工”,那么 Agentic RAG 就是“会思考、会规划的专家”。它通过引入“智能体(Agent)”模块,让 LLM 从“被动生成”升级为“主动决策”,具备处理复杂任务的能力。
一、Agentic RAG 的核心架构与工作逻辑
Agentic RAG 的核心是“智能体主导的循环决策流程”,不再是固定的线性步骤,而是根据任务需求动态调整策略。其完整工作流程可分为五个关键环节:
1. 查询理解与优化:让问题“更清晰”
用户输入的原始查询可能存在模糊性(如“分析某产品的市场竞争力”),此时 LLM 智能体会先进行“主动思考”:判断查询是否明确、是否需要补充信息。若查询模糊,智能体会自动进行“查询重写”,将其拆解为更具体的子问题,例如:“1. 该产品的核心功能是什么?2. 主要竞争对手有哪些?3. 近半年该产品的市场占有率变化如何?”——这一步是 Agentic RAG 区别于传统 RAG 的关键起点。
2. 工具选择与规划:确定“用什么工具解决问题”
智能体根据优化后的查询,自主选择适配的工具。这里的工具不再局限于向量数据库,而是可以覆盖多种类型:
- 若需要专业领域静态知识,调用向量数据库;
- 若需要实时数据(如“当前某股票价格”),调用金融数据 API;
- 若需要结构化数据统计(如“某部门近三个月的开支明细”),调用 SQL 数据库;
- 若需要获取最新资讯(如“某政策的最新解读”),调用网页爬虫工具。
例如,处理“分析某公司 2024 年第一季度财报与行业平均水平的差异”时,智能体会规划:先调用财报文档向量数据库获取该公司数据,再调用行业数据 API 获取平均水平,最后通过计算器工具进行对比分析。
3. 多轮检索与信息整合:“分步收集”关键知识
智能体按照规划调用对应工具,获取多源信息后,会对信息进行“有效性筛选”——例如,若调用 API 返回数据格式错误,智能体会重新检查接口参数并再次调用;若检索到的文档与子问题无关,会调整检索关键词重新检索。最终,所有有效信息会被整合为“结构化上下文”,为生成回答做准备。
4. 初步回答生成:基于整合信息出初稿
与传统 RAG 类似,系统会将“整合后的上下文”与“优化后的查询”拼接成提示,发送给 LLM 生成初步回答。但不同的是,此时的上下文可能包含多轮检索的结果,信息维度更丰富。
5. 自我评估与循环迭代:“检查答案是否合格”
这是 Agentic RAG 的“闭环核心”。初步回答生成后,LLM 智能体会从两个维度进行自我评估:
- 相关性:回答是否完全覆盖了用户的核心需求?是否存在信息遗漏?
- 准确性:回答中的数据、结论是否有明确的信息支撑?是否存在矛盾?
若评估不通过(如“某数据缺少来源”“未对比行业平均水平”),智能体会返回之前的步骤,重新规划工具调用或补充检索,直到生成“满足评估标准”的回答。例如,若发现“行业平均水平数据缺失”,智能体会重新调用行业数据 API 补充信息,再生成修订后的回答。
二、Agentic RAG 的实战特性
核心优势:
- 擅长处理“复杂、多跳、模糊”的任务,如行业分析、方案设计、故障排查等;
- 具备“自我修正”能力,通过多轮迭代降低错误率,减少“幻觉”;
- 工具扩展性强,可对接多类型数据源与工具,适应复杂业务场景;
- 可解释性更高:智能体的“思考过程”(如查询重写、工具选择记录)可追溯,便于排查问题。
明显局限:
- 系统复杂度高:需要设计智能体的决策逻辑、工具调用接口、评估标准,开发与调试成本远高于传统 RAG;
- 响应延迟高:多轮检索、迭代评估会增加回答时间,部分复杂任务 latency 可能超过 10 秒;
- 资源消耗大:多轮工具调用与 LLM 推理会消耗更多算力与 API 调用成本。
3、 传统 RAG 与 Agentic RAG 核心差异汇总
为了更清晰地对比两种技术范式,我们从 7 个关键维度进行总结:
对比维度 | 传统 RAG | Agentic RAG |
---|---|---|
核心驱动主体 | 固定流程 | LLM 智能体(自主决策、规划) |
LLM 角色定位 | 仅负责“基于上下文生成回答”,被动执行任务 | 兼具“问题理解、工具选择、评估修正”能力,主动主导流程 |
流程特性 | 单向线性流程,无循环 | 多轮循环流程,包含决策点与迭代修正 |
工具支持范围 | 仅支持向量数据库 | 支持向量数据库、API、SQL、计算器、爬虫等多类型工具 |
复杂任务适配性 | 仅适配“单跳、事实性”任务,复杂任务处理能力弱 | 适配“多跳、推理型、模糊型”复杂任务 |
错误处理机制 | 无主动纠错,检索错误会直接传递到生成环节 | 多轮自我评估+迭代修正,可主动修正错误 |
实战成本 | 开发成本低、算力消耗少、响应快 | 开发成本高、算力消耗大、响应相对较慢 |
4、 总结:如何选择适合的 RAG 方案?
传统 RAG 与 Agentic RAG 并非“替代关系”,而是“适配不同场景的技术方案”:
-
选择传统 RAG 的场景:
当业务需求是“快速响应简单查询”,且预算有限、开发周期短(如客服机器人回答常见问题、产品手册检索、内部规章制度查询)时,传统 RAG 是性价比更高的选择——它能以较低的成本满足“准确、快速”的核心需求。 -
选择 Agentic RAG 的场景:
当业务需求涉及“复杂决策、多源信息整合、深度推理”(如金融投研分析、医疗病例诊断辅助、企业战略规划、复杂设备故障排查)时,Agentic RAG 更能发挥价值——它能通过“智能体赋能”,让 AI 从“信息检索工具”升级为“专业问题解决助手”。
从技术发展趋势来看,随着 LLM 能力的提升与业务场景的复杂化,Agentic RAG 正在成为高阶 AI 应用的核心架构。但无论选择哪种方案,核心目标都是“让 AI 更精准、更高效地解决实际问题”——理解两种技术的差异,结合业务需求合理选型,才是落地 RAG 技术的关键。
5、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
6、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
7、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。