PyTorch深度学习实践【刘二大人】之反向传播

视频地址04.反向传播_哔哩哔哩_bilibili

 在上一节课中,我们知道了要用损失对权重w求导,来更新权重

但在网络比较复杂时候,进行一个个求导运算已经太过于复杂,于是我们考虑能否把网络看成一幅图,在图上传播梯度,最终根据链式法则求出梯度

 下图我们可以发现经过化简,无论多少层,都可以看成wx+b,这说明线性模型具有局限性

于是我们引入了非线性的激活函数,加了一个变换后,函数产生了变化就不能化简

下面是f=x*w具体的反向传播过程,L对z的偏导是上一步传递过来的不用管,L对x和L对w的偏导都是链式法则,带入进行运算,如果x前面还有值就继续向前传递

对于线性模型进行反向传播,求出L对w的偏导后,用梯度下降算法对权重进行更新。整体来看先进行正向的前馈过程,再走反向的过程

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0])  # 以tensor变量把1赋值给w
w.requires_grad = True  # w需要计算梯度


def forward(x):
    return x * w  # 线性模型


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2  # 本质上在构建计算图,看到代码需要联想狗计算图


print("predict (before training)", 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)  # 前馈过程秩序要计算loss
        l.backward()  # 这个方法会自动把计算链路上需要计算梯度的地方都求出梯度
        print('\tgrad:', x, y, w.grad.item())
        w.data = w.data - 0.01 * w.grad.data  # 更新w,0.01为学习率,注意是grad.data,我们做纯数值修改要用w梯度的data
        w.grad.data.zero_()  # 把权重w梯度的数据都清0

    print("progress:", epoch, l.item())

print("predict (after training)", 4, forward(4).item())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值