深度学习中训练、推理和验证分别都是什么意思

本文介绍了深度学习中的关键概念:训练通过优化算法调整参数,学习特征;推理在训练后用于预测和分类;验证则监控模型性能,防止过拟合,提升泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中,推理(Inference)、训练(Training)和验证(Validation)是三个关键概念,它们分别表示了不同的阶段和任务:

  1. 训练(Training):
    训练是深度学习模型的初始阶段,其中模型通过学习数据的过程来逐步优化自己的参数,以便能够捕获输入数据的特征并执行特定任务。在训练阶段,模型接收训练数据集(包括输入特征和相应的标签或目标值),并使用优化算法(如梯度下降)来调整模型参数,以最小化预测值与真实标签之间的差距(损失函数)。训练的目标是使模型能够从数据中学习到一般的模式,以便在以后的推理阶段中进行准确的预测。

  2. 推理(Inference):
    推理是在训练之后的阶段,用于使用训练好的模型进行预测或分类的过程。在推理阶段,模型接收新的、未见过的数据样本,并根据其已学习到的特征和模式,生成预测结果。推理是将模型应用于实际应用场景的过程,如图像分类、语音识别、自然语言处理等任务。

  3. 验证(Validation):
    验证是在训练阶段用于监控模型性能和避免过拟合的过程。在训练期间,通常会将训练数据集划分为两部分:训练集和验证集。模型使用训练集进行参数调整,然后使用验证集来评估模型在未见过的数据上的性能。这有助于检测模型是否过拟合训练数据,以及是否需要调整超参数或采取其他措施来提高模型的泛化能力。

总结起来:

  • 训练是通过优化算法调整模型参数,使其能够从训练数据中学习特征和模式的过程。
  • 推理是在训练后使用已训练模型进行实际预测或分类的过程。
  • 验证是在训练期间使用验证集评估模型性能,以监控和改进模型的泛化能力。
### YOLOv11模型训练验证推理方法 #### 训练过程 YOLOv11 提供了一系列配置选项来优化训练流程。`cos_lr` 是一个布尔值参数,用于决定是否采用余弦退火学习率调度器[^1]。此策略有助于动态调整学习率,在训练后期减缓收敛速度以获得更优的结果。 另一个重要参数 `close_mosaic` 控制在最后若干轮次(epochs)中关闭马赛克数据增强功能。这种技术通过拼接多张图像形成新的样本,增加数据多样性并提升检测效果。然而,在接近结束阶段禁用该功能可以减少噪声干扰,提高最终精度。 对于中断后的继续操作,`resume` 参数允许从之前保存的检查点恢复训练进程。这使得长时间运行的任务能够从中断处重新启动而无需重头再来。 为了加速计算密集型任务,`amp` 可开启自动混合精度模式。它利用半精度浮点数 (FP16) 来降低内存消耗以及加快 GPU 上的操作执行效率,同时保持全精度 FP32 的准确性。 当处理大规模数据集时,可能希望仅使用其中一部分进行实验测试,则可通过设置 `fraction` 值小于 1.0 实现这一目标。这样既节省时间又便于快速评估不同超参组合的效果。 如果计划实施迁移学习或者专注于某些特定层而不改变其他部分的话,那么就可以运用到 `freeze` 功能了。它可以接受整数值表示固定住前面 N 层不动;或者是提供具体层数索引组成的列表形式更加灵活地定义哪些区域应该被锁定下来不参与反向传播更新权重的过程当中去。 #### 验证环节 完成一轮完整的训练周期之后,通常会有一个单独步骤用来衡量当前版本的表现如何——即所谓的“验证”。按照官方文档指引,只需简单执行脚本文件即可触发相应逻辑[^3]: ```bash python val.py --data dataset.yaml --imgsz 640 --batch-size 32 --device 0 --half --workers 8 --project runs/val --name exp --exist-ok ``` 上述命令片段展示了基本调用方式及其常用选项含义解释说明如下表所示: | 参数名称 | 描述 | |----------------|----------------------------------------------------------------------------------------| | data | 数据配置 YAML 文件路径 | | imgsz | 输入图片尺寸 | | batch-size | 批量大小 | | device | 使用设备编号(支持 CPU 或者单卡或多卡GPU),这里设定了第零号显卡 | | half | 是否启用半精度运算 | | workers | 工作线程数目 | | project | 结果存储目录 | | name | 子文件夹命名 | | exist-ok | 如果同名子文件已存在则覆盖而不是报错 | #### 推理应用 实际部署场景下,加载预训练模型并对新采集的数据做出预测是最常见的需求之一。下面给出一段基于 Python API 的实现样例[^2]: ```python from ultralytics import YOLO # 初始化实例对象关联至本地磁盘上的最佳权重量化版 checkpoint 路径位置 model = YOLO('runs/train/exp/weights/best.pt') source_image_path = 'test.jpg' predictions = model.predict(source=source_image_path, save=True) ``` 在此基础上还可以进一步定制更多高级特性比如批量处理、实时视频流解析等等扩展用途非常广泛。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Env1sage

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值