35页综述:Agentic RAG七大架构首次曝光!

嘿,大家好!这里是一个专注于AI智能体的频道~

今天给家人们分享一篇35页的最新Agentic RAG综述!图特别多,应该有很多小伙伴喜欢。

1. 为什么需要Agentic RAG?

传统的LLMs虽然强大,但受限于静态训练数据,往往无法适应动态、实时的查询需求。虽然 RAG 通过引入实时数据检索提供了一定改善,但其静态工作流程仍然存在明显短板:

  • 缺乏上下文理解

  • 无法进行多步推理

  • 难以处理复杂任务

所以我们需要Agentic RAG~

2. RAG技术的演进之路

在深入Agentic RAG之前,我们先来看看RAG的基础架构:

如上图所示,传统RAG包含三个核心组件:

  • 检索模块:负责查询外部数据源

  • 增强模块:处理检索到的数据

  • 生成模块:结合LLM生成回答

但这种简单的架构难以应对复杂的现实场景。比如,当你问"帮我分析一下最近三年的销售数据并给出改进建议"时,传统RAG可能就会捉襟见肘。

3. Agentic RAG的核心原理

那么,Agentic RAG是如何突破这些限制的?智能体(Agent)架构。

每个AI Agent都包含四个关键组件:

  • LLM:作为核心推理引擎

  • 记忆系统:维护对话上下文

  • 规划能力:进行任务分解和推理

  • 工具使用:调用外部资源和API

Agentic RAG引入了四种的工作模式:

3.1 自反思模式

通过持续的自我评估和改进,Agent能够不断优化其输出质量。就像一个经验丰富的工程师,每完成一个任务都会进行复盘和改进。

3.2 规划模式

面对复杂任务时,Agent会先制定详细的执行计划,将大任务分解为可管理的小步骤。这就像项目经理在开始一个新项目时,会先制定详细的项目计划。

3.3 工具使用模式

Agent能够灵活调用各种外部工具和API,极大扩展了其能力边界。比如在分析销售数据时,可以同时调用数据库查询、统计分析和可视化工具。

3.4 多智能体协作模式

多个Agent可以协同工作,每个Agent负责特定的任务,共同完成复杂目标。这就像一个高效的团队,每个成员都有自己的专长,通过协作完成项目。

4. Agentic RAG的七大架构详解

随着技术的发展,Agentic RAG已经衍生出多种强大的架构。每种架构都有其独特的优势和适用场景。让我们一起来看看:

4.1 单智能体架构:简单而高效

单智能体架构是最基础的形式,但是别小看它。想象一个全能的私人助理,它能:

  • 智能分析用户问题

  • 选择最合适的信息源

  • 整合多个数据库的内容

  • 生成连贯的回答

比如在客服场景中,它可以同时查询订单系统、物流信息和用户档案,一次性解答用户的问题。

4.2 多智能体架构:分工协作的艺术

这就像一个专业的服务团队,每个成员都有自己的专长:

  • Agent 1:负责结构化数据查询

  • Agent 2:处理语义搜索

  • Agent 3:获取实时信息

  • Agent 4:负责个性化推荐

在金融分析场景中,一个Agent负责获取市场数据,另一个分析历史趋势,第三个预测未来走势,最后由主Agent整合输出投资建议。

4.3 层级式架构:有序管理的典范

层级式架构就像一个高效的公司组织结构:

  • 顶层Agent:负责战略决策

  • 中层Agent:执行具体任务

  • 基层Agent:处理数据检索

这种架构特别适合处理复杂的研究任务。比如在医疗诊断中,顶层Agent制定诊断策略,中层Agent分别负责症状分析、病史查询和检验报告解读,基层Agent则负责具体数据获取。

4.4 自纠错架构:不断进化的系统

自纠错架构引入了智能的质量控制机制:

  • 相关性评估:确保检索内容的准确性

  • 查询优化:动态调整搜索策略

  • 外部知识补充:及时补充缺失信息

  • 响应合成:生成高质量答案

就像一个经验丰富的编辑,不断审核和改进输出的内容质量。

4.5 自适应架构:灵活应对的智者

自适应架构最大的特点是能根据问题的复杂度动态调整处理策略:

  • 简单查询:直接使用LLM回答

  • 中等复杂度:单步检索

  • 高复杂度:多步推理和检索

这就像一个智慧的导师,能根据学生的问题难度,给出恰到好处的指导。

4.6 图增强架构:知识图谱的力量

图增强架构通过结合知识图谱,极大提升了系统的推理能力:

  • 关系推理:理解实体间的复杂关联

  • 多跳推理:支持跨领域知识关联

  • 结构化表示:优化知识组织方式

在医疗领域,它可以轻松处理"某种症状与哪些疾病相关,这些疾病又有什么共同的风险因素"这样的复杂问题。

4.7 文档工作流架构:企业级的选择

这是一个面向企业级应用的完整解决方案:

  • 文档解析:智能提取关键信息

  • 状态管理:跟踪处理进度

  • 知识检索:访问企业知识库

  • 流程编排:协调多个组件

  • 输出生成:产出结构化报告

比如在合同审查中,它能自动提取关键条款、比对历史合同、检查合规性,最后生成审查报告。

5. 最后是文中罗列的一些应用场景

(后续几乎是原文翻译,实际写的就是这么简单~)

5.1 智能客服:新一代服务体验

以Twitch的广告销售系统为例,通过Agentic RAG:

  • 实时获取广告主数据

  • 分析历史活动效果

  • 研究受众群体特征

  • 生成定制化建议

这不仅提升了运营效率,更带来了显著的转化率提升。

5.2 医疗健康:精准诊疗的助手

在医疗领域,Agentic RAG能够:

  • 整合电子病历数据

  • 检索最新医学文献

  • 分析检验报告结果

  • 提供诊疗建议支持

比如在生成病例总结时,系统能自动整合患者历史记录、当前症状和相关研究文献,为医生提供全面的参考信息。

5.3 金融分析:智能决策的帮手

在金融领域的应用包括:

  • 实时市场分析

  • 风险评估预警

  • 投资组合优化

  • 合规审查支持

例如在保险理赔中,系统可以自动处理理赔申请、验证保单信息、评估风险因素,并给出理赔建议。

5.4 法律服务:高效的法务助理

在法律领域,Agentic RAG可以:

  • 智能合同审查

  • 法律文献检索

  • 案例相关性分析

  • 合规风险评估

通过自动化的合同审查流程,大大提升了法务工作效率,同时降低了人为错误。

5.5 教育培训:个性化学习伙伴

在教育领域的应用包括:

  • 自适应学习路径

  • 个性化内容推荐

  • 实时答疑解惑

  • 学习进度跟踪

系统能根据学生的学习水平和进度,动态调整教学内容和难度。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值