本文为极市平台公众号编辑整理,未经授权,不得二次转载。
原文链接:CVPR2020 检测类论文最全汇总:136 篇论文方向细分 / 代码 / 论文解读 / 打包下载
本周三,CVPR官方正式开放下载,极市第一时间将所有论文(共1467篇)进行了下载打包,详情见**此处。为了方便大家进一步的学习,我们对这1467篇论文进行了整理,本次分享的是所有检测类论文,并将它们细分为3D目标检测、人脸检测、动作检测、视频目标检测、文本检测、行人检测**等方向,同时附上了相关解读和已开源论文的代码,共计149篇,并将其打包,获取方式见文末。
3D目标检测
【1】Learning Deep Network for Detecting 3D Object Keypoints and 6D Poses
作者:Wanqing Zhao, Shaobo Zhang, Ziyu Guan, Wei Zhao, Jinye Peng, Jianping Fan
【2】DOPS: Learning to Detect 3D Objects and Predict Their 3D Shapes
作者:Mahyar Najibi, Guangda Lai, Abhijit Kundu, Zhichao Lu, Vivek Rathod, Thomas Funkhouser, Caroline Pantofaru, David Ross, Larry S. Davis, Alireza Fathi
【3】Train in Germany, Test in the USA: Making 3D Object Detectors Generalize
作者:Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao
代码:https://github.com/cxy1997/3D_adapt_auto_driving
【4】3DSSD: Point-Based 3D Single Stage Object Detector
作者:Zetong Yang, Yanan Sun, Shu Liu, Jiaya Jia
代码:https://github.com/tomztyang/3DSSD
本文主要从point-based的研究入手,考虑如何解决掉以前的point-based的方法的瓶颈,即时间和内存占有远远大于voxel-based的方法,从而作者设计了新的SA模块和丢弃了FP模块到达时间上可达25FPS,此外本文采用一个anchor free Head,进一步减少时间和GPU显存,提出了3D center-ness label的表示,进一步提高了精度。
【5】FroDO: From Detections to 3D Objects
作者:Martin Runz, Kejie Li, Meng Tang, Lingni Ma, Chen Kong, Tanner Schmidt, Ian Reid, Lourdes Agapito, Julian Straub, Steven Lovegrove, Richard Newcombe
【6】Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection
作者:Liang Du, Xiaoqing Ye, Xiao Tan, Jianfeng Feng, Zhenbo Xu, Errui Ding, Shilei Wen
【7】IDA-3D: Instance-Depth-Aware 3D Object Detection From Stereo Vision for Autonomous Driving
作者:Wanli Peng, Hao Pan, He Liu, Yi Sun
【8】DSGN: Deep Stereo Geometry Network for 3D Object Detection
作者:Yilun Chen, Shu Liu, Xiaoyong Shen, Jiaya Jia
代码:https://github.com/chenyilun95/DSGN
【9】DR Loss: Improving Object Detection by Distributional Ranking
作者:Qi Qian, Lei Chen, Hao Li, Rong Jin
【10】MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships
作者:Yongjian Chen, Lei Tai, Kai Sun, Mingyang Li
【11】Structure Aware Single-Stage 3D Object Detection From Point Cloud
作者:Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua, Lei Zhang
【12】Learning Depth-Guided Convolutions for Monocular 3D Object Detection
作者:Mingyu Ding, Yuqi Huo, Hongwei Yi, Zhe Wang, Jianping Shi, Zhiwu Lu, Ping Luo
【13】LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention
作者:Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, Ruigang Yang
【14】SESS: Self-Ensembling Semi-Supervised 3D Object Detection
作者:Na Zhao, Tat-Seng Chua, Gim Hee Lee
【15】What You See is What You Get: Exploiting Visibility for 3D Object Detection
作者:Peiyun Hu, Jason Ziglar, David Held, Deva Ramanan
【16】Density-Based Clustering for 3D Object Detection in Point Clouds
作者:Syeda Mariam Ahmed, Chee Meng Chew
【17】Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation
作者:Jiaming Sun, Linghao Chen, Yiming Xie, Siyu Zhang, Qinhong Jiang, Xiaowei Zhou, Hujun Bao
代码:https://github.com/zju3dv/disprcn
【18】PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
作者:Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, Hongsheng Li
代码:https://github.com/sshaoshuai/PV-RCNN
【19】MLCVNet: Multi-Level Context VoteNet for 3D Object Detection
作者:Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Yiming Zhang, Kai Xu, Jun Wang
代码:https://github.com/NUAAXQ/MLCVNet
【20】A Hierarchical Graph Network for 3D Object Detection on Point Clouds
作者:Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying, Danny Z. Chen, Jian Wu
【21】HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection
作者:Maosheng Ye, Shuangjie Xu, Tongyi Cao
3D目标检测是当前自动驾驶感知模块重要的一个环节,如何平衡3D物体检测的精度以及速度更是非常重要的一个研究话题。本文提出了一种新的基于点云的三维物体检测的统一网络:混合体素网络(HVNet),通过在点级别上混合尺度体素特征编码器(VFE)得到更好的体素特征编码方法,从而在速度和精度上得到提升。与多种方法相比,HVNet在检测速度上有明显的提高。在KITTI 数据集自行车检测的中等难度级别(moderate)中,HVNet 的准确率比PointPillars方法高出了8.44%。
【22】Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
作者:Weijing Shi, Raj Rajkumar
代码:https://github.com/WeijingShi/Point-GNN
【23】Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
作者:Dingfu Zhou, Jin Fang, Xibin Song, Liu Liu, Junbo Yin, Yuchao Dai, Hongdong Li, Ruigang Yang
【24】FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
作者:Dong Wang, Yuan Zhang, Kexin Zhang, Liwei Wang
【25】ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes作者:Charles R. Qi, Xinlei Chen, Or Litany, Leonidas J. Guibas
【26】PointPainting: Sequential Fusion for 3D Object Detection
作者:Sourabh Vora, Alex H. Lang, Bassam Helou, Oscar Beijbom
【27】End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection
作者:Rui Qian, Divyansh Garg, Yan Wang, Yurong You, Serge Belongie, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger, Wei-Lun Chao
代码:https://github.com/mileyan/pseudo-LiDAR_e2e
人物(交互)检测
【28】Learning Human-Object Interaction Detection Using Interaction Points
作者:Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz Khan, Xiangyu Zhang, Jian Sun
【29】PPDM: Parallel Point Detection and Matching for Real-Time Human-Object Interaction Detection
作者:Yue Liao, Si Liu, Fei Wang, Yanjie Chen, Chen Qian, Jiashi Feng
代码:https://github.com/YueLiao/PPDM
【30】(人物检测)Learning to Detect Important People in Unlabelled Images for Semi-Supervised Important People Detection
作者:Fa-Ting Hong, Wei-Hong Li, Wei-Shi Zheng
【31】(人体检测)VSGNet: Spatial Attention Network for Detecting Human Object Interactions Using Graph Convolutions
作者:Oytun Ulutan, A S M Iftekhar, B. S. Manjunath
动作检测
【32】Combining Detection and Tracking for Human Pose Estimation in Videos
作者:Manchen Wang, Joseph Tighe, Davide Modolo
【33】G-TAD: Sub-Graph Localization for Temporal Action Detection
作者:Mengmeng Xu, Chen Zhao, David S. Rojas, Ali Thabet, Bernard Ghanem
【34】Learning to Discriminate Information for Online Action Detection
作者:Hyunjun Eun, Jinyoung Moon, Jongyoul Park, Chanho Jung, Changick Kim
活体检测
【35】ZSTAD: Zero-Shot Temporal Activity Detection
作者:Lingling Zhang, Xiaojun Chang, Jun Liu, Minnan Luo, Sen Wang, Zongyuan Ge, Alexander Hauptmann
显著性检测
【36】Learning Selective Self-Mutual Attention for RGB-D Saliency Detection
作者:Nian Liu, Ni Zhang, Junwei Han
【37】Label Decoupling Framework for Salient Object Detection
作者:Jun Wei, Shuhui Wang, Zhe Wu, Chi Su, Qingming Huang, Qi Tian
【38】Weakly-Supervised Salient Object Detection via Scribble Annotations
作者:Jing Zhang, Xin Yu, Aixuan Li, Peipei Song, Bowen Liu, Yuchao Dai
【39】UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders
作者:Jing Zhang, Deng-Ping Fan, Yuchao Dai, Saeed Anwar, Fatemeh Sadat Saleh, Tong Zhang, Nick Barnes
代码:https://github.com/JingZhang617/UCNet
【40】Adaptive Graph Convolutional Network With Attention Graph Clustering for Co-Saliency Detection
作者:Kaihua Zhang, Tengpeng Li, Shiwen Shen, Bo Liu, Jin Chen, Qingshan Liu
【41】A2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detection
作者:Yongri Piao, Zhengkun Rong, Miao Zhang, Weisong Ren, Huchuan Lu
【42】Interactive Two-Stream Decoder for Accurate and Fast Saliency Detection
作者:Huajun Zhou, Xiaohua Xie, Jian-Huang Lai, Zixuan Chen, Lingxiao Yang
【43】Multi-Scale Interactive Network for Salient Object Detection
作者:Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu
【44】Taking a Deeper Look at Co-Salient Object Detection
作者:Deng-Ping Fan, Zheng Lin, Ge-Peng Ji, Dingwen Zhang, Huazhu Fu, Ming-Ming Cheng
【45】JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection
作者:Keren Fu, Deng-Ping Fan, Ge-Peng Ji, Qijun Zhao
代码:https://github.com/kerenfu/JLDCF/
【46】Select, Supplement and Focus for RGB-D Saliency Detection
作者:Miao Zhang, Weisong Ren, Yongri Piao, Zhengkun Rong, Huchuan Lu
伪装/伪造检测
【47】Camouflaged Object Detection
作者:Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng, Jianbing Shen, Ling Shao
【48】DOA-GAN: Dual-Order Attentive Generative Adversarial Network for Image Copy-Move Forgery Detection and Localization
作者:Ashraful Islam, Chengjiang Long, Arslan Basharat, Anthony Hoogs
【49】Advancing High Fidelity Identity Swapping for Forgery Detection
作者:Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen
【50】Advancing High Fidelity Identity Swapping for Forgery Detection
作者:Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen
人脸检测
【51】Cross-Domain Face Presentation Attack Detection via Multi-Domain Disentangled Representation Learning
作者:Guoqing Wang, Hu Han, Shiguang Shan, Xilin Chen
【52】HAMBox: Delving Into Mining High-Quality Anchors on Face Detection
作者:Yang Liu, Xu Tang, Junyu Han, Jingtuo Liu, Dinger Rui, Xiang Wu
【53】BFBox: Searching Face-Appropriate Backbone and Feature Pyramid Network for Face Detector
作者:Yang Liu, Xu Tang
【54】Global Texture Enhancement for Fake Face Detection in the Wild
作者:Zhengzhe Liu, Xiaojuan Qi, Philip H.S. Torr
【55】(数据集)DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection
作者:Liming Jiang, Ren Li, Wayne Wu, Chen Qian, Chen Change Loy
【56】Face X-Ray for More General Face Forgery Detection
作者:Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, Baining Guo
【57】On the Detection of Digital Face Manipulation
作者:Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, Anil K. Jain
【58】Attention-Driven Cropping for Very High Resolution Facial Landmark Detection
作者:Prashanth Chandran, Derek Bradley, Markus Gross, Thabo Beeler
小样本/零样本
【59】Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector
作者:Qi Fan, Wei Zhuo, Chi-Keung Tang, Yu-Wing Tai
本文提出了新的少样本目标检测算法,创新点包括Attention-RPN、多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到新类别的检测中,不需要fine-tune。
【60】Incremental Few-Shot Object Detection
作者:Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M. Hospedales, Tao Xiang
【61】Don’t Even Look Once: Synthesizing Features for Zero-Shot Detection
作者:Pengkai Zhu, Hanxiao Wang, Venkatesh Saligrama
异常检测
【62】Uninformed Students: Student-Teacher Anomaly Detection With Discriminative Latent Embeddings
作者:Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger
【63】Graph Embedded Pose Clustering for Anomaly Detection
作者:Amir Markovitz, Gilad Sharir, Itamar Friedman, Lihi Zelnik-Manor, Shai Avidan
【64】Self-Trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
作者:Guansong Pang, Cheng Yan, Chunhua Shen, Anton van den Hengel, Xiao Bai
【65】Learning Memory-Guided Normality for Anomaly Detection
作者:Hyunjong Park, Jongyoun Noh, Bumsub Ham
半监督/弱监督/无监督
【66】DUNIT: Detection-Based Unsupervised Image-to-Image Translation
作者:Deblina Bhattacharjee, Seungryong Kim, Guillaume Vizier, Mathieu Salzmann
【67】A Multi-Task Mean Teacher for Semi-Supervised Shadow Detection
作者:Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng, Pheng-Ann Heng
【68】Instance-Aware, Context-Focused, and Memory-Efficient Weakly Supervised Object Detection
作者:Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-Yu Liu, Yong Jae Lee, Alexander G. Schwing, Jan Kautz
代码:https://github.com/NVlabs/wetectron
【69】SLV: Spatial Likelihood Voting for Weakly Supervised Object Detection
作者:Ze Chen, Zhihang Fu, Rongxin Jiang, Yaowu Chen, Xian-Sheng Hua
密集检测
【70】D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
作者:Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan, Chiew-Lan Tai
【71】Real-Time Panoptic Segmentation From Dense Detections
作者:Rui Hou, Jie Li, Arjun Bhargava, Allan Raventos, Vitor Guizilini, Chao Fang, Jerome Lynch, Adrien Gaidon
文本检测
【72】Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection
作者:Shi-Xue Zhang, Xiaobin Zhu, Jie-Bo Hou, Chang Liu, Chun Yang, Hongfa Wang, Xu-Cheng Yin
【73】ContourNet: Taking a Further Step Toward Accurate Arbitrary-Shaped Scene Text Detection
作者:Yuxin Wang, Hongtao Xie, Zheng-Jun Zha, Mengting Xing, Zilong Fu, Yongdong Zhang
视频目标检测
【74】Memory Enhanced Global-Local Aggregation for Video Object Detection
作者:Yihong Chen, Yue Cao, Han Hu, Liwei Wang
【75】Beyond Short-Term Snippet: Video Relation Detection With Spatio-Temporal Global Context
作者:Chenchen Liu, Yang Jin, Kehan Xu, Guoqiang Gong, Yadong Mu
【76】Detecting Attended Visual Targets in Video
作者:Eunji Chong, Yongxin Wang, Nataniel Ruiz, James M. Rehg
【77】LiDAR-Based Online 3D Video Object Detection With Graph-Based Message Passing and Spatiotemporal Transformer Attention
作者:Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, Ruigang Yang
代码:https://github.com/yinjunbo/3DVID
【78】Combining Detection and Tracking for Human Pose Estimation in Videos
作者:Manchen Wang, Joseph Tighe, Davide Modolo
行人检测
【79】STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction
作者:Zhishuai Zhang, Jiyang Gao, Junhua Mao, Yukai Liu, Dragomir Anguelov, Congcong Li
【80】Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians
作者:Jialian Wu, Chunluan Zhou, Ming Yang, Qian Zhang, Yuan Li, Junsong Yuan
【81】Where, What, Whether: Multi-Modal Learning Meets Pedestrian Detection
作者:Yan Luo, Chongyang Zhang, Muming Zhao, Hao Zhou, Jun Sun
【82】NMS by Representative Region: Towards Crowded Pedestrian Detection by Proposal Pairing
作者:Xin Huang, Zheng Ge, Zequn Jie, Osamu Yoshie
移动目标检测
【83】MnasFPN: Learning Latency-Aware Pyramid Architecture for Object Detection on Mobile Devices
作者:Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry Kalenichenko, Hartwig Adam, Quoc V. Le
通用目标检测/其他
【84】(anchor-free)Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection
作者:Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, Stan Z. Li
代码:https://github.com/sfzhang15/ATSS
本文指出one-stage anchor-based和center-based anchor-free检测算法间的差异主要来自于正负样本的选择,基于此提出ATSS(Adaptive Training Sample Selection)方法,该方法能够自动根据GT的相关统计特征选择合适的anchor box作为正样本,在不带来额外计算量和参数的情况下,能够大幅提升模型的性能。
【85】(大规模/不均衡目标检测)Large-Scale Object Detection in the Wild From Imbalanced Multi-Labels
作者:Junran Peng, Xingyuan Bu, Ming Sun, Zhaoxiang Zhang, Tieniu Tan, Junjie Yan
【86】DLWL: Improving Detection for Lowshot Classes With Weakly Labelled Data
作者:Vignesh Ramanathan, Rui Wang, Dhruv Mahajan
【87】Correlation-Guided Attention for Corner Detection Based Visual Tracking
作者:Fei Du, Peng Liu, Wei Zhao, Xianglong Tang
【88】(特征检测)Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task
作者:Aritra Bhowmik, Stefan Gumhold, Carsten Rother, Eric Brachmann
【89】Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar
作者:Nicolas Scheiner, Florian Kraus, Fangyin Wei, Buu Phan, Fahim Mannan, Nils Appenrodt, Werner Ritter, Jurgen Dickmann, Klaus Dietmayer, Bernhard Sick, Felix Heide
【90】Learning to Observe: Approximating Human Perceptual Thresholds for Detection of Suprathreshold Image Transformations
作者:Alan Dolhasz, Carlo Harvey, Ian Williams
【91】Siam R-CNN: Visual Tracking by Re-Detection
作者:Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, Bastian Leibe
【92】Progressive Mirror Detection
作者:Jiaying Lin, Guodong Wang, Rynson W.H. Lau
【93】(阴影检测)Instance Shadow Detection
作者:Tianyu Wang, Xiaowei Hu, Qiong Wang, Pheng-Ann Heng, Chi-Wing Fu
【94】(阴影检测)A Multi-Task Mean Teacher for Semi-Supervised Shadow Detection
作者:Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng, Pheng-Ann Heng
【95】(玻璃检测)Don’t Hit Me! Glass Detection in Real-World Scenes
作者:Haiyang Mei, Xin Yang, Yang Wang, Yuanyuan Liu, Shengfeng He, Qiang Zhang, Xiaopeng Wei, Rynson W.H. Lau
【96】Rethinking Classification and Localization for Object Detection
作者:Yue Wu, Yinpeng Chen, Lu Yuan, Zicheng Liu, Lijuan Wang, Hongzhi Li, Yun Fu
【97】(多anchor)Multiple Anchor Learning for Visual Object Detection
作者:Wei Ke, Tianliang Zhang, Zeyi Huang, Qixiang Ye, Jianzhuang Liu, Dong Huang
【98】Memory Enhanced Global-Local Aggregation for Video Object Detection
作者:Yihong Chen, Yue Cao, Han Hu, Liwei Wang 代码:https://github.com/Scalsol/mega.pytorch
【99】CentripetalNet: Pursuing High-Quality Keypoint Pairs for Object Detection
作者:Zhiwei Dong, Guoxuan Li, Yue Liao, Fei Wang, Pengju Ren, Chen Qian
代码:https://github.com/KiveeDong/CentripetalNet
本文提出一种使用向心偏移来对同一实例中的角点进行配对的CentripetalNet向心网络。向心网络可以预测角点的位置和向心偏移,并匹配移动结果对齐的角。结合位置信息,这种方法比传统的嵌入方法更准确地匹配角点。角池将边界框内的信息提取到边界上。为了使这些信息在角落里更容易被察觉,作者又设计了一个交叉星可变形卷积网络来适应特征。除了检测,通过为作者的CentripetalNet安置一个mask预测模块来探索anchor-free检测器上的实例分割。
【100】(one-s