The magic shop in Mars is offering some magic coupons. Each coupon has an integer N N N printed on it, meaning that when you use this coupon with a product, you may get N N N times the value of that product back! What is more, the shop also offers some bonus product for free. However, if you apply a coupon with a positive N N N to this bonus product, you will have to pay the shop N N N times the value of the bonus product… but hey, magically, they have some coupons with negative N’s!
For example, given a set of coupons { 1 2 4 −1 }, and a set of product values { 7 6 −2 −3 } (in Mars dollars M$) where a negative value corresponds to a bonus product. You can apply coupon 3 (with N N N being 4) to product 1 (with value M$7) to get M$28 back; coupon 2 to product 2 to get M$12 back; and coupon 4 to product 4 to get M$3 back. On the other hand, if you apply coupon 3 to product 4, you will have to pay M$12 to the shop.
Each coupon and each product may be selected at most once. Your task is to get as much money back as possible.
Input Specification:
Each input file contains one test case. For each case, the first line contains the number of coupons N C N_C NC, followed by a line with N C N_C NC coupon integers. Then the next line contains the number of products N P N_P NP, followed by a line with N P N_P NP product values. Here 1 ≤ N C , N P ≤ 1 0 5 1≤N_C,N_P≤10^5 1≤NC,NP≤105, and it is guaranteed that all the numbers will not exceed 2 30 2^{30} 230.
Output Specification:
For each test case, simply print in a line the maximum amount of money you can get back.
Sample Input:
4
1 2 4 -1
4
7 6 -2 -3
Sample Output:
43
题意
给出两个序列,从这两个序列中各取出一个数进行相乘,每个数最多能使用一次。求乘积的的和的最大值。
思路
贪心思想:尽可能让大的数相乘。
先对这两个数组排序,对于正数,尽可能选择大的相乘;对于负数,尽可能选择小的相乘。
代码
#include <cstdio>
#include <algorithm>
using namespace std;
int ac[100005], ap[100005];
int main() {
int c, p, sum = 0;
scanf("%d", &c);
for (int i = 0; i < c; ++i)
scanf("%d", &ac[i]);
sort(ac, ac + c);
scanf("%d", &p);
for (int i = 0; i < p; ++i)
scanf("%d", &ap[i]);
sort(ap, ap + p);
for (int i = c - 1, j = p - 1;
i >= 0 && j >= 0 && ac[i] > 0 && ap[j] > 0; --i, --j)
sum += ac[i] * ap[j];
for (int i = 0, j = 0;
i < c && j < p && ac[i] < 0 && ap[j] < 0; ++i, ++j)
sum += ac[i] * ap[j];
printf("%d", sum);
}