文章目录
PCA
- 主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。
- PCA可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。主成分能够尽可能保留原始数据的信息。
方差
是各个样本和样本均值的差的平方和的均值,用来度量一组数据的分散程度。
S 2 = ∑ i = 1 n ( x i − x ) 2 n − 1 S^2 = \frac{\sum_{i=1}^n(x_{i}-x)^2}{n-1} S2=n−1∑i=1n(xi−x)2
协方差
用于度量两个变量之间的线性相关性程度,若两个变量的协方差为0,则可认为二者线性无关。协方差矩阵则是由变量的协方差值构成的矩阵(对称阵)。