5. PCA方法及其应用

PCA是一种常用的降维方法,用于高维数据的探索和可视化。它将相关性高的高维变量转换为线性无关的低维变量,保留原始信息。PCA涉及方差、协方差和特征向量等概念,通过计算协方差矩阵的特征向量和特征值找到主成分。在sklearn中,PCA可以方便地实现降维和数据可视化,例如在鸢尾花数据集上的应用,能有效降低复杂度并保持分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA

  • 主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。
  • PCA可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。主成分能够尽可能保留原始数据的信息。

方差

是各个样本和样本均值的差的平方和的均值,用来度量一组数据的分散程度。
S 2 = ∑ i = 1 n ( x i − x ) 2 n − 1 S^2 = \frac{\sum_{i=1}^n(x_{i}-x)^2}{n-1} S2=n1i=1n(xix)2

协方差

用于度量两个变量之间的线性相关性程度,若两个变量的协方差为0,则可认为二者线性无关。协方差矩阵则是由变量的协方差值构成的矩阵(对称阵)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值