NVIDIA TAO Toolkit实战指南:LPRNet车牌识别模型全流程部署教程(训练+优化+推理)29

往期文章
RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049
RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753
RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404
以及深度学习部署工程师1~31主要学习tensorRT、cmake、docker、C++基础、语义分割、目标检测、关键点识别、RTSP推流、3D模型部署、车牌检测于识别项目、人脸属性分析(年龄、性别、名称、是否佩戴口罩)等知识
好的进入本节课程:
在这里插入图片描述

一、导言

在许多与识别相关的项目中,车牌识别是非常重要的一环。NVIDIA 提供了完善的 TAO Toolkit 和相关的预训练模型,能够帮助开发者快速搭建调试环境、重新训练模型,并通过 TensorRT 和 DeepStream 实现快速部署。

本文将按照一个实际开发流程,从模型搜索,训练,到部署,手把手地教你如何实现 LPRNet 车牌识别系统。


二、初始准备

详见官方 NGC Catalog

首先前往 NVIDIA 的预训练模型和容器中心 NGC Catalog:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博导ai君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值