往期文章
RK3588+docker+YOLOv5部署:https://blog.csdn.net/FJN110/article/details/149673049
RK3588测试NPU和RKNN函数包装https://blog.csdn.net/FJN110/article/details/149669753
RK3588刷机:https://blog.csdn.net/FJN110/article/details/149669404
以及深度学习部署工程师1~31主要学习tensorRT、cmake、docker、C++基础、语义分割、目标检测、关键点识别、RTSP推流、3D模型部署、车牌检测于识别项目、人脸属性分析(年龄、性别、名称、是否佩戴口罩)等知识
好的进入本节课程:
一、导言
在许多与识别相关的项目中,车牌识别是非常重要的一环。NVIDIA 提供了完善的 TAO Toolkit 和相关的预训练模型,能够帮助开发者快速搭建调试环境、重新训练模型,并通过 TensorRT 和 DeepStream 实现快速部署。
本文将按照一个实际开发流程,从模型搜索,训练,到部署,手把手地教你如何实现 LPRNet 车牌识别系统。
二、初始准备
详见官方 NGC Catalog
首先前往 NVIDIA 的预训练模型和容器中心 NGC Catalog: