文章目录
前言
先前我们已经说了说了一下SVM算法,并且简单的实现了一下SVM算法,但是先前的版本是英文版本的,所以现在开放中文版。由于先前的英文版本是自己直接硬写的,然后自行查词汇,词典写出来的,但是受限于自己的水平,所以有很多问题,可能连表述也具备误导性,因此现在开放中文版本,并且对先前的一些内容进行补充说明。
本文目标:
1. SVM基本数学推导
2. 基于Python实现SVM算法
涉及概要:
- 拉格朗日
- 高数求导(偏导)
- 基本几何空间向量知识
- Python基础语法
- 逻辑抽象能力
(注:为了更好理解,本文顺序将和原英文版顺序不同,并且删减了一些部分,使得内容更加简练)
此外本博文针对的是基于统计机器学习的一些经典算法。
算法简介
在开始之前我们先简单介绍一下SVM算法,这个算法是非常经典的一个分类算法,用于二分类处理,算法,通过将我们的数据映射到一个解的超空间内,之后通过超平面将我们的数据划分为两个空间从而实现对对象的分类。
例如下面的例子: