如何分分钟理解SVM(中文版)

本文详细介绍了支持向量机(SVM)算法,包括数据标签、算法核心、理论推导、编码实现等内容。SVM是一种经典的二分类算法,通过找到最大化几何间隔的超平面进行分类。文章强调了核函数在处理非线性问题中的重要性,并简述了拉格朗日乘子法和SMO算法在求解SVM中的应用。同时,提供了简单的案例和完整的Python代码,适合对机器学习有一定基础的读者学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

先前我们已经说了说了一下SVM算法,并且简单的实现了一下SVM算法,但是先前的版本是英文版本的,所以现在开放中文版。由于先前的英文版本是自己直接硬写的,然后自行查词汇,词典写出来的,但是受限于自己的水平,所以有很多问题,可能连表述也具备误导性,因此现在开放中文版本,并且对先前的一些内容进行补充说明。

本文目标:

1. SVM基本数学推导
2. 基于Python实现SVM算法

涉及概要:

  1. 拉格朗日
  2. 高数求导(偏导)
  3. 基本几何空间向量知识
  4. Python基础语法
  5. 逻辑抽象能力

(注:为了更好理解,本文顺序将和原英文版顺序不同,并且删减了一些部分,使得内容更加简练)
此外本博文针对的是基于统计机器学习的一些经典算法。

算法简介

在开始之前我们先简单介绍一下SVM算法,这个算法是非常经典的一个分类算法,用于二分类处理,算法,通过将我们的数据映射到一个解的超空间内,之后通过超平面将我们的数据划分为两个空间从而实现对对象的分类。

例如下面的例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Huterox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值