蒙特卡洛风光场景并通过削减法聚类法得到几个典型场景(包含Matlab代码和Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、蒙特卡洛方法简介

三、风光场景模拟

四、削减法与聚类法

五、研究流程

六、研究结果与讨论

七、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab、Python、数据、文档下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、研究背景与意义

新能源出力受天气、气候影响巨大,具有随机性、波动性、间歇性等特点,使得电力平衡不确定性较大。因此,通过蒙特卡洛方法模拟风光场景,并通过削减法、聚类法得到典型场景,对于评估风力发电和太阳能发电系统的性能、城市规划中的建筑设计和能源效率评估等方面具有重要意义。

二、蒙特卡洛方法简介

蒙特卡洛方法是一种基于随机抽样的数值计算方法,通过多次随机抽样来估计系统的行为,从而得到系统的统计性质。在风光模型中,蒙特卡洛方法可以用来模拟风速、风向和太阳光照的变化,进而评估风力和太阳能系统在不同条件下的性能。

三、风光场景模拟

  1. 风能模拟:模拟风速和风向的变化,评估风力发电系统的发电量。这通常涉及到风速分布特性的拟合,如采用Weibull分布、Rayleigh分布和Gamma分布等。
  2. 太阳能模拟:模拟太阳光照的变化,评估太阳能发电系统的发电量。这涉及到光照强度分布特性的拟合,如采用Beta分布等。

四、削减法与聚类法

  1. 削减法:削减法是一种通过减少数据点数量来简化数据集的方法。在风光场景模拟中,削减法可以用于减少生成的随机样本数量,同时保留样本的主要特征。
  2. 聚类法:聚类法是一种将数据集划分为多个群组的方法,每个群组内的数据点具有相似的特征。在风光场景模拟中,聚类法可以用于将生成的随机样本聚类成几个典型场景类型。常用的聚类算法包括K-means算法等。

五、研究流程

  1. 确定模拟范围和参数:如地形、植被分布、天气等。
  2. 使用蒙特卡洛方法生成随机样本:每个样本代表一个风光场景,包括不同的地形、植被、光照等。
  3. 提取代表性特征:如颜色直方图、纹理特征、光照强度等。
  4. 使用削减法和聚类法处理样本:将样本聚类成几个群组,代表不同的典型场景类型。
  5. 选取典型场景:对于每个聚类得到的群组,选取其中心或代表性的样本作为该类别的典型场景。
  6. 可视化展示与分析:对每个典型场景进行可视化展示,比较它们之间的区别和相似性,并分析不同场景类型的分布情况以及它们在参数空间中的特征。

六、研究结果与讨论

通过蒙特卡洛方法生成大量风光场景,并使用削减法和聚类法得到几个典型场景。这些典型场景能够反映不同天气、气候条件下的风光出力情况,为风力和太阳能发电系统的设计和规划提供重要参考。同时,研究结果还可以为城市规划和建筑设计提供指导,以提高能源效率和可持续性。

七、结论与展望

本研究通过蒙特卡洛方法模拟风光场景,并通过削减法和聚类法得到几个典型场景。这些典型场景具有代表性,能够反映不同条件下的风光出力情况。未来研究可以进一步探索更多有效的聚类算法和削减方法,以提高典型场景的准确性和可靠性。同时,还可以将研究结果应用于更广泛的领域,如智能电网、能源管理等。

详细文档见第4部分。

📚2 运行结果

 

部分代码:

 %% 风机出力
    for i=1:times  %得到风电出力样本
        if wt_samp(i)<vci %如果风速小于切入风速
            Pwt_samp(i)=0; %风机功率为0
        end 
        if wt_samp(i)>vci&&wt_samp(i)<vN %如果风速大于切入风速,同时小于额定风速
            Pwt_samp(i)=(wt_samp(i)-vci)/(vN-vci)*PN_wt;
            if   Pwt_samp(i)>PN_wt %如果风电功率大于额定功率
                Pwt_samp(i)=PN_wt; %则风电功率等于额定功率
            end 
        end
        if wt_samp(i)>vN&&wt_samp(i)< vco %如果风速大于额定风速 同时小于切出风速
            Pwt_samp(i)=PN_wt;%风电功率等于额定功率
        end 
        if wt_samp(i)> vco %如果风速大于切出风速
            Pwt_samp(i)=0;%风电功率等于0
        end
    end               

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab、Python、数据、文档下载

<think>好的,我现在需要帮助用户了解或实现得物签名的相关技术,特别是签名算法的实现方式。首先,我需要收集已有的信息。根据用户提供的引用,特别是引用[4]和[5],得物的签名算法可能涉及逆向工程分析,使用了JavaScript中的XMLHttpRequest重写来拦截请求,并在请求中包含特定的sign参数。这可能意味着签名生成是在客户端进行的,通常在前端JavaScript代码中完成。 接下来,我应该考虑常见的签名生成方法。常见的Web应用签名算法通常使用HMAC、AES、RSA或自定义的哈希组合。引用[1]提到了RSA算法,但得物的签名可能更倾向于使用HMAC-SHA256之类的哈希算法,结合时间戳、随机数和请求参数进行签名,以防止篡改和重放攻击。 用户可能需要具体的步骤,比如逆向分析得物的JavaScript代码,找到生成sign的函数,提取关键参数和加密逻辑。引用[5]中的代码片段展示了如何重写XMLHttpRequest的open方法来拦截请求,这可能用于调试和定位签名生成的代码位置。 此外,引用[4]提到使用Python进行算法还原,所以可能需要在Python中复现JavaScript的签名生成逻辑。这通常涉及分析请求参数如何排序、拼接,以及如何与密钥结合进行哈希或加密。需要注意反爬机制,如obfuscation(代码混淆)或动态密钥,这可能需要使用AST(抽象语法树)解析或动态执行来还原算法。 用户可能还需要了解如何应对反调试措施,比如在Chrome开发者工具中使用断点调试,或者使用工具如Frida进行Hook。同时,引用[3]和[4]强调了法律和合规问题,确保研究仅用于学习目的,不用于非法用途。 最后,应该提醒用户注意法律风险,遵循网站的使用条款,避免侵犯知识产权或违反计算机安全法律。总结起来,实现得物签名需要逆向工程分析前端代码,提取关键算法,处理可能的混淆和反调试,最后用目标语言如Python复现算法。</think>### 得物签名算法实现方式分析 得物签名算法主要用于接口请求的身份验证和防篡改保护,常见实现方式涉及以下技术点: #### 1. **签名参数组成** 签名通常由以下参数动态生成: - 请求参数(经排序、过滤空值后拼接) - 时间戳(如:$timestamp=1620000000$) - 随机数(如:$nonce=5a8s3d$) - 设备指纹(如:$device\_id=abcdef$) - 应用密钥(加密盐值,可能动态获取)[^4] 示例参数拼接逻辑: $$ \text{sign\_str} = \text{path} + \text{sorted\_params} + \text{timestamp} + \text{nonce} $$ #### 2. **加密算法类型** 根据逆向分析,得物可能采用以下组合: - **HMAC-SHA256**:对拼接字符串进行哈希运算 - **AES/Base64编码**:对结果二次处理 - **自定义位移/异或操作**:增加逆向难度[^5] #### 3. **JavaScript代码混淆** 关键函数可能被混淆,例如: ```javascript function _0x12ab5(a, b) { return a ^ b << 3; } // 需要AST解析还原控制流 ``` #### 4. **Python算法还原示例** ```python import hmac import hashlib def generate_sign(params, secret_key): # 1. 参数排序并拼接 sorted_str = '&'.join([f"{k}={v}" for k,v in sorted(params.items())]) # 2. HMAC-SHA256加密 sign = hmac.new(secret_key.encode(), sorted_str.encode(), hashlib.sha256).hexdigest() # 3. 自定义处理(示例) return sign.upper() + str(int(time.time())) ``` #### 5. **反爬对抗措施** - 动态密钥:通过接口定期更新加密盐值 - 环境检测:验证是否在真机环境运行 - 请求频率限制:异常高频触发验证码[^5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值