💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
运用蒙特卡洛法模拟电动汽车的充电方式,包括常规充电、快速充电以及更换电池充电曲线,并研究这些方式对日负荷曲线的影响。此外,还将探讨无序充电、受控充电以及受控充放电曲线对日负荷曲线的影响。通过模拟这些充电方式,我们可以深入了解电动汽车在不同充电模式下对电网的影响,从而为未来电动汽车的普及和充电基础设施的规划提供重要参考。
一、蒙特卡洛法在充电负荷模拟中的基本原理
蒙特卡洛模拟(Monte Carlo Simulation)是一种基于随机抽样和统计分析的数值计算方法,适用于复杂随机系统的建模。其核心是通过生成符合特定概率分布的随机数,模拟系统不确定性行为,再通过大量重复抽样逼近真实解。
特点:
- 适用性广:可处理非线性关系和复杂概率分布(如充电时间、SOC状态);
- 精度可控:模拟次数越多,结果越接近真实值;
- 实现简单:算法易于编程(如Matlab),硬件要求低。
在电动汽车充电负荷模拟中,该方法通过随机生成车辆充电起始时间、SOC状态、充电模式等参数,聚合得到电网负荷曲线。
二、三种充电模式的负荷特性及参数设置
1. 常规充电(慢充)
- 负荷特性:
- 功率范围:3–14 kW,充电时长5–10小时;
- 充电方式:恒流(CC)+ 恒压(CV),例如先以0.5C电流充至4.2V,再恒压充至电流<0.02C;
- 时间分布:集中在夜间(19:00–22:00),起始时间服从正态分布。
- 关键参数:
- 起始SOC:服从正态分布(均值30%–50%);
- 充电需求:与日行驶里程相关(对数正态分布)。
2. 快速充电(快充)
- 负荷特性:
- 功率范围:45–90 kW(商用快充桩可达240kW),时长1–2小时;
- 充电方式:高倍率CCCV(如5C₅A充至3.6V后转恒压);
- 时间分布:午后至夜间(14:00–20:00),起始时间服从泊松分布或直角梯形分布。
- 功率范围:45–90 kW(商用快充桩可达240kW),时长1–2小时;
- 电网影响:
- 显著抬高商业区/居民区峰谷差(渗透率每增10%,峰谷差增5–8%);
- 高渗透率时可能引发局部过载(如机场充电站24小时高负荷)。
3. 更换电池(换电模式)
- 负荷特性:
- 换电时长:5–10分钟,集中充电功率高(单机75kW);
- 充电策略:低谷时段集中充电(如00:00–6:00),支持V2G反向调峰;
- 时间分布:换电时间服从正态分布(如重卡换电时间~N(11,0.5²))。
- 优势与局限:
- 优势:可优化负荷曲线,降低峰谷差;
- 局限:电池标准化不足、投资成本高。
三种模式参数对比表
参数 | 常规充电 | 快速充电 | 换电模式 |
---|---|---|---|
充电功率 | 3–14 kW | 45–240 kW | 集中式75kW/组 |
充电时长 | 5–10小时 | 1–2小时 | 10分钟(换电)+夜间充电 |
峰值时段 | 19:00–22:00 | 14:00–20:00 | 可调控(如低谷时段) |
关键分布函数 | 正态分布(时间/SOC) | 泊松分布(时间) | 固定频次+正态分布(SOC) |
电网影响 | 加剧夜间峰谷差 | 商业区峰谷差↑↑ | 可优化负荷曲线 |
三、蒙特卡洛模拟流程及案例应用
1. 模拟流程设计
- 步骤1:确定输入参数概率分布
- 车辆类型(私家车、出租车、公交)比例;
- 起始充电时间、初始SOC、日行驶里程的分布函数。
- 步骤2:生成随机样本
- 例如:单辆车充电起始时间~N(19,1.5²),SOC~U(20%,40%)。
- 步骤3:计算单次充电负荷曲线
- 常规/快充:按CCCV模型计算实时功率;
- 换电:根据换电频次和电池组数生成集中充电负荷。
- 步骤4:聚合集群负荷
- 重复10,000次模拟,统计96个15分钟时段的负荷期望值。
2. 典型案例结果
- 场景1:2030年某省电动汽车集群(蒙特卡洛模拟)
- 公交车峰值负荷4639.5 MW(集中于22:00);
- 私家车峰值负荷<公交车的70%,总峰值负荷10.09 GW。
- 场景2:换电重卡集群
- 换电时间11:00/15:00/19:00,负荷可控在电网低谷。
四、电网影响差异及优化策略
1. 负荷曲线影响对比
- 常规充电:夜间负荷峰值↑→加剧峰谷差(如居民区负荷峰值增12–15%);
- 快速充电:商业区午后负荷骤增→局部电压波动(THD>5%);
- 换电模式:通过谷段充电降低峰谷差(某案例峰谷差率降7.3%)。
2. 优化策略
- 有序充电调控
- 常规充电:分时电价引导夜间负荷后移;
- 快充:动态功率限制(如峰值期降流20%)。
- 换电+V2G协同
- 换电站作为虚拟电厂,低谷充电、高峰放电。
- 双层蒙特卡洛优化
- 第一阶段:最小化充电成本(考虑分时电价);
- 第二阶段:以第一阶段结果为约束,最小化负荷波动。
五、研究展望与挑战
- 模型精细化:
- 需融合交通路网数据提升时空预测精度;
- 新技术适配:
- 超宽电压范围(200–1500V)换电站电源设计;
- 政策协同:
- 高渗透率下(如>30%),无序充电或致电网峰值增13%,需强制有序充电。
结论
蒙特卡洛法通过随机抽样有效刻画了电动汽车充电的时空不确定性。常规充电因夜间集中加剧峰谷差,快速充电对商业区电网冲击显著,换电模式通过负荷可调控性成为平抑波动的优选方案。未来需结合分时电价、V2G技术和时空双层蒙特卡洛优化,实现充电负荷与电网的协同规划。
📚2 运行结果
文档讲解:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]庞培川,曾成,杨彪,等.蒙特卡洛模拟法计算电动汽车充电负荷[J].通信电源技术, 2016(1):4.DOI:10.3969/j.issn.1009-3664.2016.01.060.
[2]陈鹏,孟庆海,赵彦锦.基于蒙特卡洛法的电动汽车充电负荷计算[J].电气制造, 2016(011):011.