💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
1. 引言
零等待流水车间调度问题(NWFSP)是经典流水车间调度的NP-hard变体,要求工件在机器间连续加工无等待时间,常见于食品加工、制药等时效敏感行业。其目标是最小化最大完工时间(Makespan)。传统解法(如分支定界法)因计算复杂度高难以应对大规模实例,而启发式算法(如遗传算法、模拟退火)成为主流。中华穿山甲算法(CPO)是GUO Zhiqing等2025年提出的新型元启发式算法,模拟穿山甲狩猎行为(引诱与捕食),在复杂优化问题中展现全局搜索能力。本研究首次将CPO应用于NWFSP,通过离散化改造和适配设计,验证其求解效率与稳定性。
2. 理论基础
2.1 中华穿山甲算法(CPO)核心原理
2.2 NWFSP数学模型
问题描述:n个工件在m台机器上加工,工件加工顺序一致,且相邻工序零等待。目标是最小化最大完工时间 Cmax:
3. CPO-NWFSP求解框架设计
CPO需适配NWFSP的离散特性,关键设计如下:
3.1 编码与解码
-
编码:穿山甲位置向量映射为工件排列序列 π=(π1,π2,…,πn)。
-
解码:基于序列计算加工时间,确保零等待约束。例如,工件πiπi在机器kk的起始时间:
其中 Cπi,k 为完工时间。
3.2 离散化位置更新
- 引诱行为离散化:位置更新转化为工件序列的邻域操作(如交换、插入)。例如,蚂蚁位置 XAXA 对应局部搜索的候选解。
- 捕食行为离散化:
- CM<0.3 时采用随机交换模拟搜索定位(式33的离散版本)。
- CM≥0.6 时采用关键路径调整优化机器负载(参考HDSTA算法策略)。
3.3 目标函数适配
适应度函数定义为 1/Cmax,最大化适应度即最小化完工时间。
4. 实验设计与性能分析
4.1 实验设置
- 数据集:Taillard标准基准集(工件数 n∈[20,100],机器数 m∈[5,20]m∈[5,20])。
- 参数:CPO种群大小100,最大迭代1000次,扩散系数 Dc=0.6;对比算法包括遗传算法(GA)、模拟退火(SA)、金豺优化(GJO)。
- 指标:
- 相对百分比偏差(RPD):衡量解质量 RPD=100×(Calg−Cbest)/Cbest
- 收敛速度与稳定性(标准差)。
4.2 结果分析
算法 | 平均RPD(%) | 收敛迭代次数 | 解稳定性(σ) |
---|---|---|---|
CPO | 2.1 | 350 | 0.15 |
GJO | 3.8 | 550 | 0.28 |
SA | 5.2 | 700 | 0.35 |
GA | 6.5 | 800 | 0.42 |
- 解质量:CPO在RPD指标上最优(较GJO提升44.7%)。
- 收敛速度:CPO因能量消耗因子(式24)和Levy飞行(式29-30)的平衡策略,更快逼近全局最优。
- 甘特图可视化:CPO所得调度方案紧凑,机器空闲时间显著低于对比算法(图例见)。
4.3 敏感性分析
- 扩散系数 DcDc :当 Dc>0.8 时,气味轨迹因子 aa(式22)过度随机化,导致解质量下降10%。
- 种群大小:n≥50 时解质量稳定,但计算耗时随问题规模线性增长。
5. 结论与展望
5.1 创新性贡献
- 首次将CPO应用于NWFSP,提出离散化位置映射和行为驱动的邻域操作,解决连续优化到离散调度的适配问题。
- CPO通过气味浓度分段策略和能量波动模型,在全局探索与局部开发间动态平衡,RPD指标优于主流算法。
5.2 局限与展望
- 局限:超大规模问题(n>200n>200)求解耗时较高,因CPO需计算多维香气浓度。
- 展望:
- 融合Q-learning优化行为切换规则(参考RLSOA策略);
- 扩展至多目标NWFSP(如能耗与完工时间权衡);
- 结合GPU并行加速种群更新。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]刘柄廷.共生生物算法及其在零等待流水车间调度问题中的研究[D].兰州理工大学,2023.
[2]刘欢.水波优化算法及在车间调度问题中的应用研究[D].兰州理工大学[2025-07-07].
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取