【MMDetection系列 - 1】 MMdetection基础环境配置及demo运行

本文详细描述了如何在Ubuntu系统上配置MMDetection所需的环境依赖,包括创建虚拟环境、安装PyTorch和相关库,以及下载和运行官方提供的demo以验证环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言


MMDetection是一个基于Pytorch的深度学习目标检测工具箱,支持多种主流的目标检测框架。

第一次接触这个框架,参考了官方文档(https://mmdetection.readthedocs.io/zh-cn/latest/get_started.html),在此记录一下自己的学习过程,也可供参考。

本文介绍了如何在ubuntu系统下配置MMDetection所需环境依赖,并运行demo测验结果。


一、配置基础环境

操作系统:Ubuntu 22.10
显卡:RTX 3080

1. 终端指令

在终端依次输入如下指令:

(1)创建并激活虚拟环境

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

其中“openmmlab”是环境名,可以自己随意命名,python版本也可自己指定,本文设置为3.8

(2)安装PyTorch (版本需对应)

pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

可直接访问如下地址,获取各种版本的Pytorch文件:

https://download.pytorch.

### 运行 mmdetection3d Demo 并实现可视化的具体方法 要运行 mmdetection3d 的 demo 并实现可视化,可以按照以下方式操作: #### 准备工作 1. **下载预训练模型** 需要先从指定链接下载预训练模型文件,并将其保存到 `checkpoints` 文件夹中。例如,可以从以下地址获取模型文件[^2]: - 官方下载地址:https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth - 或者通过 CSDN 下载。 将下载好的 `.pth` 文件放置于项目根目录下的 `checkpoints` 文件夹中。 2. **准备输入数据** 输入的数据应为点云格式(如 `.bin` 或 `.pcd`)。如果需要处理自定义的点云文件,请确保其格式与配置文件一致。 3. **验证环境安装** 确认已正确安装所有依赖项,并能够正常调用 GPU 加速功能。可以通过以下命令测试环境是否搭建成功[^3]: ```python import torch print(torch.cuda.is_available()) # 输出 True 表明 CUDA 支持可用 ``` #### 执行 Demo 脚本 执行官方提供的 `pcd_demo.py` 脚本来完成检测和可视化任务。以下是具体的命令结构[^4]: ```bash python demo/pcd_demo.py \ <path_to_input_pcd_or_bin> \ <config_file_path> \ <checkpoint_file_path> \ [--out-dir <output_directory>] \ [--device <cpu/cuda:0>] \ [--score-thr <threshold_value>] \ [--show] ``` 其中各参数含义如下: - `<path_to_input_pcd_or_bin>`:待检测的点云文件路径。 - `<config_file_path>`:对应的配置文件路径,用于描述模型架构及相关超参设置。 - `<checkpoint_file_path>`:预训练权重文件路径。 - `[--out-dir <output_directory>]`:可选参数,指定输出结果存储位置。 - `[--device <cpu/cuda:0>]`:设备选项,默认使用 CPU;推荐显卡支持的情况下设为 `cuda:0`。 - `[--score-thr <threshold_value>]`:置信度阈值过滤条件,默认值通常为 0.5。 - `[--show]`:开启实时显示模式,在屏幕上展示预测框及其类别标签。 示例命令如下所示: ```bash python demo/pcd_demo.py \ /home/user/data/custom_point_cloud.bin \ configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py \ checkpoints/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth \ --show ``` 此脚本会读取输入点云数据,利用加载的模型进行推理运算,并最终呈现出带有标注边界的三维物体边界框效果。 #### 使用 MMEngine 可视化工具增强体验 除了上述基础流程外,还可以借助 MMEngine 中内置的 `Visualizer` 工具进一步提升交互性和灵活性[^1]。它允许开发者更加精细地控制哪些阶段的状态或中间产物被记录下来以便后续分析查看。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值