【MMDetection系列 - 2】MMDetection使用自定义数据集训练、测试已有模型


前言

本文介绍如何用自定义数据集来对MMDetection中给定的模型进行训练及测试。

本文采用的模型是:deformable_detr
数据集为: cat 数据集


一、数据集准备

在终端输入以下指令来下载并解压cat数据集:

rm -rf cat_dataset*
wget https://download.openmmlab.com/mmyolo/data/cat_dataset.zip
unzip cat_dataset.zip -d cat_dataset && rm cat_dataset.zip 

文件目录结构为:

mmdetection
├── mmdet
├── tools
├── configs
├── cat_dataset
│ ├── annotations (其中包括3个json文件)
│ ├── images(包含144张图片)
│ ├── labels(图片的json文件)
│ ├── labelsclass_with_id.txt

二、编写配置文件

1.创建配置文件

在mmdetection根目录下创建一个文件夹try_demo,在文件夹下建立一个my_demo_cat.py文件,文件内容如下

# my_demo_cat: 使用deformable-detr & cat数据集

_base_ = [
    '../configs/deformable_detr/deformable-detr-refine-twostage_r50_16xb2-50e_coco.py'
]

model = dict(
    backbone=dict(
        init_cfg=None)		# 不直接从官网下载预训练模型,使用我自己下载好的预训练模型
)


data_root = 'cat_dataset/' #数据集路径前缀


metainfo = {
   
    # 类别名,注意 classes 需要是一个 tuple,因此即使是单类,后面也需要加逗号。
    
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值