前言
本文介绍如何用自定义数据集来对MMDetection中给定的模型进行训练及测试。
本文采用的模型是:deformable_detr
数据集为: cat 数据集
一、数据集准备
在终端输入以下指令来下载并解压cat数据集:
rm -rf cat_dataset*
wget https://download.openmmlab.com/mmyolo/data/cat_dataset.zip
unzip cat_dataset.zip -d cat_dataset && rm cat_dataset.zip
文件目录结构为:
mmdetection
├── mmdet
├── tools
├── configs
├── cat_dataset
│ ├── annotations (其中包括3个json文件)
│ ├── images(包含144张图片)
│ ├── labels(图片的json文件)
│ ├── labelsclass_with_id.txt
二、编写配置文件
1.创建配置文件
在mmdetection根目录下创建一个文件夹try_demo
,在文件夹下建立一个my_demo_cat.py
文件,文件内容如下
# my_demo_cat: 使用deformable-detr & cat数据集
_base_ = [
'../configs/deformable_detr/deformable-detr-refine-twostage_r50_16xb2-50e_coco.py'
]
model = dict(
backbone=dict(
init_cfg=None) # 不直接从官网下载预训练模型,使用我自己下载好的预训练模型
)
data_root = 'cat_dataset/' #数据集路径前缀
metainfo = {
# 类别名,注意 classes 需要是一个 tuple,因此即使是单类,后面也需要加逗号。