HQL操作
参考资料:
- Hive详细介绍及简单应用
- Hive基本操作,DDL操作(创建表,修改表,显示命令),DML操作(Load Insert Select),Hive Join,Hive Shell参数(内置运算符、内置函数)等
- Hive入门及常用指令
- Hive分区、分桶操作及其比较
- 函数分类,HIVE CLI命令,简单函数,聚合函数,集合函数,特殊函数(窗口函数,分析函数,混合函数,UDTF),常用函数Demo
1、DDL操作
(1)显示命令
- 显示数据库:
show databases;
- 创建数据库:
CREATE DATABASE|SCHEMA [IF NOT EXISTS] <database name>
- 删除数据库:
DROP DATABASE StatementDROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT|CASCADE];
- 进入数据库:
use database_name;
- 显示表:
show tables;
- 描述表结构:
desc table_name;
- 显示分区:
show partitions;
(2)创建表
建表语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
说明:
-
CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用
IF NOT EXISTS
选项来忽略这个异常。 -
EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
-
LIKE 允许用户复制现有的表结构,但是不复制数据。
-
ROW FORMAT row_format
ROW FORMAT DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char] [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive通过 SerDe 确定表的具体的列的数据。
-
STORED AS
SEQUENCEFILE|TEXTFILE|RCFILE
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
-
CLUSTERED BY
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。
-
字段类型
- 基础数据类型:tinyint, smallint, int, bigint, float, decimal, boolean, varchar, char, string
- 复合数据类型:struct, array, map
具体实例
-
创建内部表mytable
hive> create table if not exists mytable(sid int,sname string) > row format delimited fields terminated by ',' stored as textfile;
示例, 显示如下:
-
创建外部表pageview
hive> create external table if not exists pageview( > pageid int, > page_url string comment 'The page URL' > ) > row format delimited fields terminated by ',' > location 'hdfs://192.168.158.171:9000/user/hivewarehouse/';
-
创建分区表invites
hive> create table student_p( > Sno int, > Sname string, > Sex string, > Sage int, > Sdept string) > partitioned by(part string) > row format delimited fields terminated by ','stored as textfile;
-
创建带桶的表student
hive> create table student(id int,age int,name string) > partitioned by(stat_data string) > clustered by(id) sorted by(age) into 2 buckets > row format delimited fields terminated by ',';
</