Doris

Apache Doris(原名:Palo)是一个高性能、实时的MPP分析型数据库,非常适合海量数据的即席查询、报表分析、指标统计等 OLAP 场景。Doris 的设计目标是:极致查询性能、简单易用、支持高并发分析和明细查询


一、Doris 核心特点

特性说明
MPP 架构支持大规模分布式并行计算,横向扩展能力强
列式存储支持高压缩比,聚合类查询性能优异
高并发、低延迟查询支持上万并发,秒级查询响应
极简架构、易部署无需依赖 HDFS 或 YARN,单机即可运行
向量化执行引擎支持 SIMD 加速,提高 CPU 使用效率
支持实时更新支持流式数据导入(Kafka、Flume、Routine Load)
MySQL 协议兼容无缝对接 BI 工具、JDBC 直连、可视化友好
完备的多维建模能力支持宽表、星型/雪花建模

二、Doris 架构组成

                    +--------------------+
                    |    FE(Frontend)  |
                    |   元数据管理/调度   |
                    +--------------------+
                             |
       +---------------------+----------------------+
       |                    |                      |
+-------------+     +-------------+        +-------------+
|    BE-1     |     |    BE-2     |  ...   |    BE-n     |
| Backend 节点|     | 存储 + 计算 |        |             |
+-------------+     +-------------+        +-------------+

- FE: 管理元数据、查询计划、调度
- BE: 实际执行查询、存储数据

三、数据导入方式

模式场景说明
Broker Load离线批量导入支持从 HDFS/OSS/OBS 加载
Stream Load实时小批量支持 HTTP 方式上传文件
Routine Load实时流式导入支持 Kafka 实时导入
Insert Into手动插入支持 SQL insert
DataX / Flink-Doris-Connector集成方案与离线/流处理框架结合

四、表模型类型

类型适合场景特点
Duplicate Key明细表所有数据原样存储,无聚合
Aggregate Key指标汇总支持聚合函数,如 SUM、MAX
Unique Key明细去重主键唯一,支持更新
Primary Key(新版)事务语义更强更好支持 UPSERT 更新操作

五、典型查询性能对比(以 1 亿行数据为例)

查询类型Doris 耗时传统 MySQL 耗时
条件聚合(SUM)0.2s10s+
分组聚合(GROUP BY)0.3s15s+
高并发(上万请求)支持容易 OOM
多维分析支持多表 JOIN 效率低

六、使用场景

类型描述
实时 BI 报表分析高并发、多维聚合统计
用户行为分析埋点日志分析、路径追踪
运维/日志监控秒级日志聚合、异常定位
指标平台建设PV/UV、DAU、留存率分析
数据中台查询引擎明细 + 汇总兼顾,替代传统 Hive
IoT 时序数据分析实时指标计算、大规模聚合

七、与 ClickHouse 对比

特性DorisClickHouse
架构复杂度简单(无依赖)中等
实时导入强(Kafka Routine Load)弱(写入延迟大)
更新能力支持更新/删除(Primary Key)不支持
查询性能优异优异(复杂 SQL 更好)
MySQL 兼容完全兼容部分支持
使用门槛中等偏高
社区活跃度Apache 顶级项目商业公司主导

八、生态集成

工具/平台是否兼容
BI 工具(如 Superset、FineBI)
Flink / Kafka / DataX
Grafana(SQL 数据源)
Spark / Hive 数据打通
Java 应用(JDBC)

九、简单示例:建表 + 查询

-- 建表
CREATE TABLE user_behavior (
    user_id BIGINT,
    event_type VARCHAR(20),
    event_time DATETIME
)
ENGINE=OLAP
DUPLICATE KEY(user_id, event_time)
DISTRIBUTED BY HASH(user_id) BUCKETS 10
PROPERTIES("replication_num" = "1");

-- 插入
INSERT INTO user_behavior VALUES (1001, 'click', '2024-05-10 10:00:00');

-- 查询
SELECT event_type, COUNT(*) FROM user_behavior GROUP BY event_type;

十、适合 Doris 的技术选型建议

场景选型建议
实时明细查询 + BI 报表✅ Doris
多维指标统计 + 秒级响应✅ Doris
离线大数据批处理❌ 推荐 Hive/Trino
实时流计算 + 明细查询✅ Doris + Flink
实时埋点行为分析✅ Doris or ClickHouse
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

思静鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值