516. Longest Palindromic Subsequence(M)

本文介绍了一种利用动态规划求解最长回文子序列的方法,通过实例解释了子序列和回文的概念,并给出了详细的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个字符串s,求其中最长回文子序列的长度,你可以认为s的最长长度不超过1000。原题以及例子如下,
这里写图片描述
首先来简单分析一下这道题,题目描述很简单,这里需要理解两个词,子序列和回文。从例子中可以看出子序列是指按照字符串顺序但是不必连续的字符串。回文就是指将字符串倒着读和正着读时为同一个字符串,即s[i] = s[n-i], s[n]为字符串最后一位,s[0]表示字符串第一位。
好,弄清楚了概念以及判断回文串的方法,下面进行第二步,如何求得最长回文串。考虑到回文串的判定是从中间到两边的,从少到多的,而重复的判断s中的子序列,肯定会有很多重复的步骤,比如判断字符串abba时,判断abba整个字符串时重复了判断bb字符串的工作,所以我们使用动态规划来解决这个问题。
下面结合原码来看。dp[i][j]是指字符串s在区间[i,j]之间的最长回文子序列的长度,所以最后的返回值为dp[0][s.size() - 1].然后,因为我们判断长度为n的字符串的最长回文子序列长度时,我们需要之前记录的长度小于n的子序列长度结果,所以我们最外层的循环是使判断子串的长度不断的增加,从而记录下有用的结果,为后面计算更长子串的判断作铺垫。原码如下,

class Solution {
public:

    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int> > dp(n, vector<int>(n, 0));
        for (int i  = 0; i < n; ++i) {
            dp[i][i] = 1;
        }
        int l = 1;
        while (l < n) {
            for (int i  = 0; i + l < n; ++i) {
                if (s[i] == s[i+l]) {
                    dp[i][i + l] = max(dp[i+1][i+l-1] + 2, dp[i][i+l]);
                } else {
                    dp[i][i+l] = max(dp[i][i+l-1], dp[i+1][i+l]);
                }
            }
            ++l;
        }

    return dp[0][l-1];

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值