OpenCV图像处理和应用—阈值与平滑处理(一)

本文介绍了OpenCV中的阈值处理技术,包括基本的阈值处理函数threshold(),自适应阈值处理函数cv2.adaptiveThreshold(),以及Otsu阈值处理方法。通过阈值处理,可以将图像转换为二值图像,便于前景和背景的区分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

© Fu Xianjun. All Rights Reserved.

阈值处理

阈值处理是指剔除图像内像素值高于一定值或者低于一定值的像素点。例如,设定阈值为180,然后:

1.将图像中所有像素值小于180的设置为0
2. 将图像中所有像素值大于等于180的设置为255

通过上述方式能够得到一副二值图像,如效果图所示,按照上述阈值处理方式将一副灰度图像处理为一副二值图像,有效地实现了前景和背景的分离。

效果图
原图:
在这里插入图片描述
处理后的原图:
在这里插入图片描述
OpenCV提供了函数cv2.threshold()和函数cv2.adaptiveThreshold(),用于实现阈值处理。

threshold()函数

ret, dst = cv2.threshold(src, thresh, maxval, type)
src: 输入图,只能输入单通道图像,通常来说为灰度图	
dst: 输出图	
thresh: 阈值	
maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值