记录一下最近用过的python包

本文介绍了如何使用Python的Scipy库进行S-G平滑滤波、通过`scipy.optimize.least_squares`进行有界范围的非线性最小二乘拟合,并利用peakutils模块寻找峰值。此外,还提到了scipy.interpolate用于数据差分插值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录一下最近用过的python包

S-G平滑

scipy.signal.savgol_filter

最小二乘拟合

scipy.optimize.least_squares
可以限制范围的最小二乘拟合
求解一个变量有界的非线性最小二乘问题。给定残差f(x) (n个实变量的m-D实函数)和损失函数rho(s)(标量函数),least_squares找到代价函数f(x)的局部最小值:
*minimize F(x) = 0.5 * sum(rho(f_i(x)*2), i = 0, …, m - 1)
subject to lb <= x <= ub

损失函数的目的是减少异常值对解的影响。
用法:
scipy.optimize.least_squares(fun, x0, jac=‘2-point’, bounds=- inf, inf, method=‘trf’, ftol=1e-08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss=‘linear’, f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={})[source]¶
此外optimize中还包含很多中最小二乘拟合方法
参考网址:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

寻峰算法

peakutils.peak

差值

scipy.interpolate
可以通过差值由离散数据生成连续数据
参考网址:https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值