阅读论文 《Train RNN as fast as CNN》

Train RNN as fast as CNN

@(NLP)[cuDNN-LSTM, SRU]

ABSTRACT

作者提出了一个简单循环单元的架构(SRU),能够轻易的实现并行化。SRU像CNN一样快,比优化后的LSTM实现快5到10倍。

In SRU, the majority of computation for each step is independent of the recurrence and can be easily parallelized. SRU is as fast as a convolutional layer and 5-10x faster than an optimized LSTM implementation.

Architecture

这里写图片描述

左边是通用的RNN结构,右边是SRU

  • 在传统的结构中,每次输入step xt x t , t=1,,n t = 1 , … , n 依赖于前一步。这阻碍了并行化。
  • SRU的设计,使得处理输入的过程能与其他输入独立(大灰块),用相对轻量级的计算做递归组合(小灰块)。主要的计算(虚线框内)能被轻易的并行化。

Average processing time

这里写图片描述

使用cuDNN LSTM和字级别的2D卷积,提出的SRU在32个样本每一批的平均处理时间(毫秒)
- D:特征维数
- K:特征宽度
- l l :每一个序列的令牌数

METHOD

Formula

SRU的基础形式包含一个遗忘门,给出一个在t时间给出 x t 输入,我们可以计算一个装换 x˜t x ~ t 和一个遗忘门 ft f t

x˜t=Wxt x ~ t = W x t

ft=σ(Wfxt+bf) f t = σ ( W f x t + b f )

计算只依赖 xt x t ,使得能让所有的时间步并行化, 遗忘门能调制用来产生输出的状态的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值