点云数据格式解析 sensor_msgs::PointCloud2

在使用多线激光的时候需要总是会碰到点云数据,这里简单的接受一下点云数据,并堆数据结构进行分析,方便自己后期对点云特征数据进行处理。

Rviz中的点云数据

本书据采用的经典的 loam_velodyne 算法,跑得是开源的包pcap 包, 有时间会详细介绍跑包的方法
在这里插入图片描述

点云数据结构分析

具体官方数据分析: http://docs.ros.org/jade/api/sensor_msgs/html/msg/PointCloud2.html

header:  // 点云的头信息
  seq: 963 //
  stamp:  // 时间戳
    secs: 1541143772
    nsecs: 912011000
  frame_id: "/camera_init"
height: 1   // If the cloud is unordered, height is 1  如果cloud 是无序的 height 是 1
width: 852578  //点云的长度
fields:  //  sensor_msgs/PointField[] fields 
  - 
    name:
ROS 2 (Robot Operating System) 中,`sensor_msgs::msg::LaserScan` 类型的数据表示的是激光雷达扫描信息,包含了一系列的测量数据,如角度、强度等。而 `pcl::PointCloud<pcl::PointXYZ>` 是 Point Cloud Library (PCL) 提供的一个结构体,用于存储三维空间中的点云数据,每个点由 x、y 和 z 坐标组成。 要从 `LaserScan` 转换为 `pcl::PointCloud<pcl::PointXYZ>`,你需要对激光雷达的数据进行解析,并将其映射到三维坐标上。以下是一个简化版的步骤: 1. 首先,确保已经包含了所需的库头文件,例如: ```cpp #include <ros/ros.h> #include <sensor_msgs/LaserScan.h> #include <pcl_conversions/pcl_conversions.h> #include <pcl/point_cloud.h> #include <pcl/point_types.h> ``` 2. 创建一个函数,接收 `sensor_msgs::msg::LaserScan` 数据: ```cpp void laserScanToPointCloud(const sensor_msgs::msg::LaserScan& scan, pcl::PointCloud<pcl::PointXYZ>& lidar_cloud) { // 获取激光扫描范围内的点数 int num_points = scan.ranges.size(); // 初始化点云 lidar_cloud.resize(num_points); for (size_t i = 0; i < num_points; ++i) { double angle = scan.angle_min + i * (scan.angle_increment); double distance = scan.ranges[i]; // 将角度转换为x,y坐标(假设激光雷达垂直于地面) float x = distance * cos(angle); float y = distance * sin(angle); // 添加z坐标通常为0,因为激光雷达水平扫描 float z = 0; // 将点添加到点云中 lidar_cloud.points[i].x = x; lidar_cloud.points[i].y = y; lidar_cloud.points[i].z = z; } } ``` 这个函数简单地将激光雷达的线性距离和角度转换为笛卡尔坐标,并放入 `lidar_cloud` 中。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值