YOLO v2

YOLO系列(二)——YOLO v2



前言

该系列为博主自主学习YOLO系列的自我总结。本篇是对YOLOv2进行一个总结和分析。论文主要从三个方面阐述了YOLOv2的改进,分别是:Better、Faster、Stronger。本文也主要是从这三个点来进行总结归纳。


一、设计原因

为了弥补YOLOv1的定位准度不高的缺点,YOLOv2随之诞生。YOLOv2相对于YOLOv1来说,在保证分类精度的同时,着重提醒召回率(recall)和定位(location)。召回率=正确检测出来的类别图片数/该类别图片总数。


二、Better

(1)Batch Normalization

Batch Normalization加在每一个卷积层之后,在添加了BN层之后就可以把Dropout层去掉。这样可以在模型加速收敛的同时,进一步避免过拟合。

(2)High Resolution Classifier

通常来说,将输入图片的分辨率提高有助于提升特征提取的效果。但是如果在输入端提升分辨率,就需要在分类器上也进行分辨率的提升。YOLOv2就是在前10个epoch中将ImageNet的分辨率提升至448×448来适应输入图片的高分辨率。

(3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值