YOLO系列(二)——YOLO v2
前言
该系列为博主自主学习YOLO系列的自我总结。本篇是对YOLOv2进行一个总结和分析。论文主要从三个方面阐述了YOLOv2的改进,分别是:Better、Faster、Stronger。本文也主要是从这三个点来进行总结归纳。
一、设计原因
为了弥补YOLOv1的定位准度不高的缺点,YOLOv2随之诞生。YOLOv2相对于YOLOv1来说,在保证分类精度的同时,着重提醒召回率(recall)和定位(location)。召回率=正确检测出来的类别图片数/该类别图片总数。
二、Better
(1)Batch Normalization
Batch Normalization加在每一个卷积层之后,在添加了BN层之后就可以把Dropout层去掉。这样可以在模型加速收敛的同时,进一步避免过拟合。
(2)High Resolution Classifier
通常来说,将输入图片的分辨率提高有助于提升特征提取的效果。但是如果在输入端提升分辨率,就需要在分类器上也进行分辨率的提升。YOLOv2就是在前10个epoch中将ImageNet的分辨率提升至448×448来适应输入图片的高分辨率。