Ultralytics:YOLO11使用教程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

相关介绍

  • YOLO11是Ultralytics YOLO系列实时目标探测器的最新版本,重新定义了具有尖端精度,速度和效率的可能性。在以前的YOLO版本令人印象深刻的进步的基础上,YOLO11引入了架构和训练方法的重大改进,使其成为广泛的计算机视觉任务的通用选择。
    在这里插入图片描述

  • [1] YOLO11 源代码地址:https://github.com/ultralytics/ultralytics.git

  • [2] YOLO11 官方文档:https://docs.ultralytics.com/models/yolo11/

  • 关键特性

    • 增强的特征提取:YOLO11采用了改进的骨干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂的任务性能。
    • 优化效率和速度:YOLO11引入了精炼的架构设计和优化的培训管道,提供更快的处理速度,并保持精度和性能之间的最佳平衡。
    • 更少参数的更高精度:随着模型设计的进步,YOLO11m在使用COCO数据集时实现了更高的平均平均精度(mAP)。
  • 支持的任务和模式
    YOLO11建立在YOLOv8中引入的多功能模型范围之上,为各种计算机视觉任务提供增强的支持:
    在这里插入图片描述
    该表提供了YOLO11模型变体的概述,展示了它们在特定任务中的适用性以及与Inference、Validation、Training和Export等操作模式的兼容性。这种灵活性使YOLO11适用于计算机视觉的广泛应用,从实时检测到复杂的分割任务。

  • 表现度量标准:用于衡量某个系统、组织或个人表现的多个标准或指标。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

前提条件

实验环境

torch==2.0.1
torchvision==0.15.2
onnx==1.14.0
onnxruntime==1.15.1
pycocotools==2.0.7
PyYAML==6.0.1
scipy==1.13.0
onnxsim==0.4.36
onnxruntime-gpu==1.18.0
gradio==4.31.5
opencv-python==4.9.0.80
psutil==5.9.8
py-cpuinfo==9.0.0
huggingface-hub==0.23.2
safetensors==0.4.3

安装环境

pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快

在这里插入图片描述

在这里插入图片描述

项目地址

Linux

git clone https://github.com/ultralytics/ultralytics.git

cd ultralytics
# conda create -n yolo11 python=3.9
# conda activate yolo11
pip install -r requirements.txt
pip install -e .
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。

cd yolov10
# conda create -n yolo11 python=3.9
# conda activate yolo11
pip install -r requirements.txt
pip install -e .

YOLO11使用教程

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

进行目标检测

yolo predict model=yolo11n.pt source=test_imgs/

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

进行实例分割

yolo predict model=yolo11n-seg.pt source=test_imgs/

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

进行姿势估计

yolo predict model=yolo11n-pose.pt source=test_imgs/

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

进行旋转框检测

yolo predict model=yolo11n-obb.pt source=test_imgs/

在这里插入图片描述
在这里插入图片描述

进行图像分类

yolo predict model=yolo11n-cls.pt source=test_imgs/

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文献

[1] YOLO11 源代码地址:https://github.com/ultralytics/ultralytics.git
[2] YOLO11 官方文档:https://docs.ultralytics.com/models/yolo11/

### 关于 Ultralytics YOLOv8.1.2 的下载及使用说明 #### 一、YOLOv8.1.2 下载方法 Ultralytics 提供了官方 GitHub 仓库来托管 YOLOv8 及其相关版本。可以通过以下方式获取 YOLOv8.1.2: 1. **克隆官方仓库** 使用 Git 命令从官方仓库克隆最新版代码并切换至指定标签 `v8.1.2`: ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics git checkout v8.1.2 ``` 2. **通过 pip 安装特定版本** 如果仅需安装 Python 包而无需源码,可直接通过 pip 安装指定版本: ```bash pip install ultralytics==8.1.2 ``` --- #### 二、YOLOv8.1.2 配置环境 为了成功运行 YOLOv8 模型,需要配置合适的开发环境。 1. **Python 版本要求** - 推荐使用 Python 3.8 或更高版本[^1]。 2. **依赖库安装** 运行以下命令以自动安装所需依赖项: ```bash pip install -r requirements.txt ``` 3. **验证安装** 执行以下代码片段确认安装无误: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') print(model.info()) ``` --- #### 三、YOLOv8.1.2 训练流程 以下是基于自定义数据集训练模型的标准操作指南。 1. **准备数据集** 数据集应遵循 COCO 格式或 Pascal VOC 格式,并创建对应的 YAML 文件描述数据结构。例如: ```yaml train: /path/to/train/images val: /path/to/validation/images nc: 80 # 类别数量 names: ['class_1', 'class_2', ..., 'class_n'] # 类别名称列表 ``` 2. **启动训练任务** 利用 CLI 工具执行训练脚本,具体参数可通过 YAML 文件调整[^3]: ```bash yolo task=detect mode=train \ model=yolov8n.pt \ data=path_to_data_yaml.yaml \ epochs=100 \ batch=16 ``` 3. **监控训练过程** 默认情况下,YOLOv8 实现了多种回调机制用于实时跟踪性能指标和保存中间结果[^4]。 --- #### 四、YOLOv8.1.2 测试与导出 完成训练后,可以对模型进行评估并将权重文件转换为目标格式(如 ONNX)以便部署。 1. **模型测试** 对新图像或视频应用检测功能: ```python from ultralytics import YOLO model = YOLO('/path/to/best.pt') # 加载最佳模型 results = model.predict(source='/path/to/image.jpg', save=True, conf=0.5) ``` 2. **模型导出** 将 `.pt` 格式的 PyTorch 权重文件转换为其他框架支持的格式,例如 ONNX[^2]: ```python from ultralytics import YOLO model = YOLO('/path/to/model.pt') success = model.export(format='onnx') ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FriendshipT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值