数据压缩常用算法汇总(思维导图)

参考:《数据压缩导论》第2-6章

包括霍夫曼编码、算术编码、词典方法和基于上下文的压缩

 

思维导图

Introduction to Data Compression Fourth Edition Morgan Kaufmann 本书的中文版由图灵社区翻译出版 (资源是英文本) 享誉世界的数据压缩经典著作 内容全面新颖 示例精彩丰富 理论联系实践 方便学以致用 本书是数据压缩方面的经典著作 目前已经出到了第4版 数据压缩技术及其应用从未停止前进的步伐 图像 语音 文本 音频 视频等新的应用领域层出不穷 本书也时俱进 不断更新 这一版基本涵盖了数据压缩领域的最新发展 书中首先介绍了基本压缩方法 包括无损压缩和有损压缩 涉及的数学知识 然后从无损压缩开始 依次讲述了霍夫曼编码 算术编码以及词典编码技术等 对于有损压缩 还描述了标量 矢量以及微分编码和分形压缩技术 本书在上一版的基础上 扩展讨论了基于小波的压缩技术 特别是越来越流行的JPEG 2000标准 还增加了范式霍夫曼码以及更多有关二进制算术编码的信息 本书非常适合从事数据压缩相关工作的专业技术人员 软硬件工程师 学生等阅读 数字图书馆 多媒体等领域的技术人员也可参考 Khalid Sayood 美国内布拉斯加大学工程学教授 分别于1977年和1979年获得罗彻斯特大学电气工程学理学学士和理学硕士学位 并于1982年获得得克萨斯州农工大学电气工程学博士学位 他的主要研究方向包括数据压缩 信源信道联合编码和生物信息学 ">Introduction to Data Compression Fourth Edition Morgan Kaufmann 本书的中文版由图灵社区翻译出版 (资源是英文本) 享誉世界的数据压缩经典著作 内容全面新颖 示例精彩丰富 理论联系实践 方便学以致用 本书是数据压缩方面的经典 [更多]
YOLOv5n的算法特点 YOLOv5n是基于YOLOv5架构的Nano版本,主要针对边缘计算场景设计,通过以下技术实现轻量化和高效性: 网络结构优化 主干网络(Backbone):采用精简的CSPDarknet结构,减少卷积层数量和通道数,降低计算量515。 Focus结构(早期版本):通过像素切片操作将输入图像通道数扩展4倍,提升特征提取效率,但最新版本可能移除该结构以进一步简化模型615。 NeckHead:使用PANet(Path Aggregation Network)进行多尺度特征融合,结合小尺寸预测头(如20×20网格),优化小目标检测能力15。 模型压缩技术 量化(Quantization):将模型权重从FP32转换为INT8,体积减少约70%,同时保持较高精度515。 剪枝(Pruning):移除冗余神经元或通道,进一步压缩模型体积(典型模型大小<2MB)15。 高效推理机制 单阶段检测:将目标定位和分类统一为回归问题,单次前向传播完成检测,推理速度可达30 FPS(320×240分辨率)515。 多正样本匹配:每个真实框由多个预测框匹配,提升训练效率和检测鲁棒性615。 2. 在人数统计系统中的具体应用 (1)检测跟踪流程 行人检测 YOLOv5n对摄像头输入的每帧图像进行推理,输出行人边界框(Bounding Box)及置信度。 通过非极大值抑制(NMS)过滤重叠检测框,保留高置信度结果615。 动态计数 跟踪算法:结合IOU Tracker或DeepSORT精简版,通过交并比(IOU)或特征匹配关联前后帧目标,避免重复计数1316。 区域统计逻辑:设置虚拟检测线(如入口/出口),根据目标移动方向统计进出人数1316。 (2)嵌入式部署优化 硬件适配 边缘处理器:如ESP32-S3(内置NPU)或STM32H7系列MCU,支持INT8量化模型加速推理515。 低功耗设计:动态调整帧率(如无人时降至5 FPS),结合PIR传感器唤醒摄像头,平均功耗可控制在300mW以下15。 模型训练调优 数据集:使用COCO或自定义数据集,标注行人边界框,并通过Mosaic数据增强提升遮挡场景的泛化能力615。 损失函数:优化定位损失(CIoU Loss)和分类损失,平衡检测精度速度15。 将以上内容形成思维导图
04-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值