必看 | 卷积神经网络的一般框架

本文详细介绍了卷积神经网络的一般框架,包括输入层、卷积层、池化层、全连接层和激励层。卷积层是核心,采用局部关联的滤波器对数据进行处理。池化层用于数据压缩,全连接层负责分类任务,而激励层应用softmax函数进行多分类。此外,还讨论了CNN的优缺点和一些增强模型泛化性的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这一节中我们将具体介绍一个卷积神经网络的基本框架,这个框架能更有效地帮助我们理解卷积神经网络的组成。

在这里插入图片描述
从图中我们可以看到,主要包含着输入层、卷积层、池化层、全连接层、激励层( 一般用softmax函数,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类)这5个结构,下面我们分别对其进行解析。

输入层

输入层是整个神经网络的一个输入,在处理图像分类问题时,一般输入的都是一张图片的像素矩阵,一般黑白图片就只有一个通道,所以深度就是1;彩色图片的一般都有3个通道,(RGB,red+green+blue),所以深度就是3。

有3种常见的图像数据处理方式:

  1. 去均值:把输入数据各个维度都中心化到0。

  2. 归一化:幅度归一化到同样的范围。

  3. PCA/白化:用PCA降维,白化是对数据每个特征轴上的幅度归一化。

CNN里一般只做去训练集的均值。

卷积层—CONV layer

卷积计算层是卷积神经网络的核心,这个操作在物理上是可解释的。我们知道神经网络是全连接的,卷积网络不是,是局部关联的。过程是:每个神经元看做一个滤波器filter,filter对局部数据计算。取一个数据窗口,这个数据窗口不断地滑动,直到覆盖所有样本。上图所示中一共有2个卷积层,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值