非因解读 | DSP空间全转录组+单细胞测序 描绘新冠患者多器官空间组织图谱

麻省理工学院、麻省总医院和哈佛大学的研究团队在《Nature》上发表了关于新冠病毒感染者的多器官空间组织图谱研究。他们首次结合DSP空间全转录组和单细胞测序技术,分析了新冠患者肺、肝、肠等器官的细胞图谱和空间分布。研究显示肺部巨噬细胞、细胞毒性T细胞和树突状细胞富集,肺泡II型细胞减少,暗示肺部纤维化风险增加。此外,空间全转录组分析揭示了新冠病毒在肺部组织中的空间转录组变化,特别是在发炎区域,与肺部纤维化和屏障损失相关的基因表达出现显著变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DSP空间全转录组+单细胞测序

绘新冠患者多器官空间组织图谱

图片

由麻省理工学院,麻省总医院,哈佛大学的多个研究团队领导的一项在新冠病毒感染者的大型研究近日在《Nature》上发表。研究人员首次在新冠病人的尸检样本中应用了单细胞测序、空间全转录组、空间靶向转录组以及空间蛋白组学,在多组学的层面上全面地剖析新冠病毒带来的影响。

技术亮点

研究首度综合应用了DSP空间全转录组和单细胞测序对新冠病患包括肝、肺、肠道等各个器官组织中的细胞图谱以及空间分布进行了全面的构建。

非因DSP空间全转录组(Whole Transcriptome Atlas, WTA)可在单张石蜡包埋(FFPE)组织切片或者新鲜冷冻切片上实现原位检测人类(18000多个蛋白编码基因)和小鼠(21000多个蛋白编码基因)的全转录组表达量分析。

研究方法

研究团队共收集了32名新冠病患的尸检组织,其中包括23个肺部组织、16个肝脏组织、16个肾脏组织、19个心脏组织共11种不同器官组织,再根据下游平台的需求分别进行石蜡包埋处理(空间全转录组),低温冷冻保存(单细胞测序及单细胞核测序)和急冻处理(大块组织测序)。随后研究人员通过整合单细胞测序、空间全转录组、空间靶向转录组和空间蛋白组学的数据,对各个器官组织中的细胞群落进行单细胞水平的空间分布分析。详细研究流程见下图1。

图片

图1 

研究结果

研究人员首先从单细胞测序分析上对免疫细胞、肺部内皮细胞、表皮细胞进行了群组分析。数据表明肺部组织中,巨噬细胞、细胞毒性T细胞和树突状细胞均大量富集于病患肺部组织。此外,与健康肺部组织相比,作为重要肺部组织稳态成分的肺泡II型细胞数量大量减少,体现了在新冠病毒侵袭下细胞凋亡的情况。由于肺泡II性细胞减少会直接影响占据了肺泡表面95%面积的肺泡I性细胞的数目,因此会增加肺部纤维化的风险。

除了在单细胞水平上,研究人员亦结合大块组织测序数据,对每个细胞群落的转录组变化进行分析。数据显示,基因表达水平波动最剧烈的细胞群落包括了淋巴管内皮细胞、肺泡I型及肺泡II型细胞。其中肺泡II型细胞出现了大量与宿主病原体反应相关的基因上调。另一方面,作为预防肺部纤维化的肺表面活性物质(Lung Surfactant)则出现了大量下调。值得注意的是,与肺部再生高度相关的分子信号通路亦出现了大量上调,与新冠病毒造成的肺部组织损伤现象相吻合。

研究团队进一步在11个新冠病患和3名健康对照的肺部组织中通过DSP空间全转录组(18335个蛋白编码基因)进行原位分析。研究人员一方面采用RNAScope的病毒探针对新冠病毒的侵袭部位进行精准的区域选择(Region of Interest, ROI),另一方面通过PanCK表达水平,对发炎部位和非发炎部位进行区域选择,以求在组织水平上全面体现新冠病毒在肺部组织中造成的空间转录组变化。下图2为研究团队的感兴趣区域选择示例。

图片

图2 

DSP数据显示,在PanCK高表达,即重度发炎的组织中,肺泡I型和肺泡II型细胞都出现了大量富集。而在新冠病毒高丰度且重度发炎组织中,成纤维细胞丰度较健康组织出现了大量上调,与新冠病毒带来的肺部纤维化临床表现相吻合。当研究人员在同一病患组织中比较重度发炎组织和邻近非发炎组织时,数据表明除了TNF-alpha、IFN-gamma等信号通路的大量上调之外,发炎组织中与细胞之间紧密链接(Tight Junction)的基因出现了下调,体现了肺泡组织损伤和由病毒带来的屏障损失。

文章通讯作者之一,来自BIDMC癌症研究所生物信息学总监Ioannis S. Vlachos博士认为,空间基因组学分析使科研界能够进一步扩展单细胞研究,并直接在患者组织中进行详尽的细胞图谱测量,以及描述基因表达改变的过程。Vlachos博士认为通过使用空间全转录组在组织原位上捕获超过18,000个基因的能力具有真正的革命意义。研究人员能够分析组织上由于新冠病毒导致的局部炎症,细胞动态改变以及病毒丰度之间的关系,对新冠病毒患者肺部的病理机制获得重要见解。

关于非因DSP空间全转录组

非因生物凭借在癌症蛋白组学、系统生物学和空间组学领域的独特优势,于2019年在中国率先建立了第一个DSP技术平台,非因DSP空间全转录组(Whole Transcriptome Atlas, WTA)可在单张石蜡包埋(FFPE)组织切片或者新鲜冷冻切片上实现原位检测人类(18000多个蛋白编码基因)和小鼠(21000多个蛋白编码基因)的全转录组表达量分析。

产品特点

  • 适用于石蜡包埋(FFPE)和新鲜冷冻组织等多种样品类型。

  • 全面,无偏差的人类和小鼠空间全转录组表达分析解决方案。

  • 检测全转录组中不同基因和信号通路的空间原位表达信息。

  • 可与多达4个荧光抗体或RNAscope结合适用选取感兴趣的组织区域。

  • 可以额外定制多达60个定制靶物如非编码RNA, 病毒RNA等。

  • 下游流程直接对接Illumina二代测序技术进行定量检测。

非因生物作为NanoString认证的全球8个首要DSP技术服务中心之一,已为五十余家近百个项目提供优质的服务,拥有大量的项目经验、专业的技术支持和强大的生信分析团队,确保一流的技术服务能力。

### 空间转录组学与单细胞测序的技术特点 #### 单细胞测序技术概述 单细胞测序是一种能够解析个体细胞之间差异的强大工具,其核心在于捕捉单个细胞内的分子特征。相比于传统的批量测序(bulk RNA-seq),它能更好地揭示细胞间的异质性[^3]。具体来说,单细胞转录组测序(scRNA-seq)通过分离并分析单一细胞的mRNA表达谱来实现这一点。 #### 空间转录组学的核心价值 空间转录组学则进一步扩展了单细胞测序的能力,不仅提供了基因表达的信息,还保留了这些表达模式在组织中的物理位置。这种能力对于理解复杂的组织结构及其功能至关重要[^4]。例如,在肿瘤微环境中,特定类型的免疫细胞可能聚集于某些区域,而空间转录组学可以精确定位这些分布特性[^1]。 --- ### 常见技术平台比较 | 技术名称 | 特点 | |------------------|------------------------------------------------------------------------------------------| | **10x Genomics** | 提供高通量解决方案,支持大规模实验设计;适用于种样品类型 | | | - scRNA-seq:捕获大量单细胞的数据 | | | - Visium Spatial Gene Expression:专注于整个切片上的空间分辨率 | 上述两种方案均被广泛应用,并且随着硬件改进和技术优化不断进步[^5]。 --- ### 数据处理与生物信息学分析流程 针对这两种数据集的计算框架通常分为以下几个方面: 1. **质量控制 (QC)** 初步筛选去除低质量读取片段以及背景噪音干扰项。 2. **标准化 Normalization** 使用log transformation或其他统计模型调整原始计数值以便后续建模操作更加稳健可靠. 3. **降维 Dimensionality Reduction & Clustering** 应用PCA, t-SNE 或 UMAP 方法降低维度后聚类发现潜在的颖亚型群体. 4. **标记基因鉴定 Marker Identification** 找到区分各个cluster的关键因素即所谓markers genes用于解释生物学意义. 5. **可视化 Visualization** 结果呈现形式样包括散点图热力图等等直观展示重要趋势变化规律. 6. **高级分析 Advanced Analysis** 如轨迹推断(Trajectory Inference), 细胞通讯(Cell Communication)预测等深入挖掘隐藏机制.[^2] 以下是Python代码示例演示如何利用Scanpy库完成部分基础步骤: ```python import scanpy as sc adata = sc.read_10x_h5('filtered_gene_bc_matrices.h5') # 加载数据 sc.pp.filter_cells(adata, min_genes=200) # 过滤掉不合格单元格 sc.pp.normalize_total(adata, target_sum=1e4) # 总数归一化至每万条reads sc.pp.log1p(adata) # 取自然对数变换改善动态范围表现 sc.tl.pca(adata,n_comps=50) # PCA分解提取主要成分向量表示原矩阵近似情况 sc.pl.pca_variance_ratio(adata) # 展现各主轴贡献度比例曲线图表辅助判断最佳选取数目 ``` --- ### 实际案例分享 一篇发表的研究展示了结合组学手段探索心脏病理过程的成功范例。其中提到运用snRNA-seq加scATAC-seq再加上Visium Space Transcriptome三重验证最终锁定了调控心肌纤维分化的重要因子RUNX1作为治疗靶点之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值