最大子数组和js解法

该博客介绍了如何使用贪心和动态规划算法解决寻找整数数组中最大子数组和的问题。通过解题思路和代码展示,详细解析了两种方法在处理这个问题时的思路及实现过程。示例数据和预期输出也一并给出,帮助理解算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:

输入:nums = [1]
输出:1
示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

题解1:(贪心)

解题思路:

贪心就是从局部最优解中,推出全局最优解。

局部最优:如果当前位置前面的最大子数组和sum小于0,说明前面的最大子数组和对当前位置是副作用,直接将当前位置的值作为本身位置的最大子数组和。

全局最优:记录每一个位置的最大子数组和,并取最大的子数组和。ans是用于记录每个位置上的最大子数组和,取其中的最大值,起始值为数组的第一个元素。

 代码:

var maxSubArray = function(nums) {
    //sum用于记录当前位置的最大子数组和,如果当前位置前面的最大数组和sum小于0,说明前面的最大子数组和对当前位置是副作用,直接将当前位置作为本身位置的最大子数组和
    // ans是用于记录每个位置上的最大子数组和,取其中的最大值,起始值为数组的第一个元素
    let sum = 0 , ans = nums[0]
    for(let i = 0 ; i < nums.length ; i++) {
        if(sum > 0) {
            sum += nums[i]
        }else {
            sum = nums[i]
        }
        ans = Math.max(ans,sum)
    }
    return ans
};

题解2:(动态规划)

var maxSubArray = function(nums) {
  // dp[i]表示nums中以nums[i]结尾的最大子数组和
  let dp = []
  dp[0] = nums[0]
  //rusult用于记录当前位置上的最大和 也就是当前位置上以及前面的数组元素中的最大和 初始值为dp[0] 
  let result = dp[0]
  // 从i=1位置开始遍历 因为dp[0]已经确定了 
  for(let i = 1 ; i < nums.length ; i++) {
    // dp[i]要么是当前数字 要么是当前数字与前面数字最大子数组和的和
    dp[i] = Math.max(dp[i-1]+nums[i],nums[i])
    // 如果当前的dp[i]大于前面的dp[i] 则更新最大子数组和的值result 
    result = Math.max(dp[i],result)
  }
  return result
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值