炮哥的train代码解析

本文详细解析了B站炮哥视频中的train代码,利用ChatGPT4生成的注释帮助理解,深入探讨了Python在深度学习和人工智能领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

炮哥文章代码
这是b站炮哥视频里面,train的代码 注释使用chatgpt4生成

代码注释

import argparse:# 引入 Python 标准库 argparse,用于解析命令行参数。
import os:# 引入 Python 标准库 os,用于操作文件和目录。
import time:# 引入 Python 标准库 time,用于计时。
import numpy as np:# 引入第三方库 numpy,用于进行数学计算。
import matplotlib.pyplot as plt:# 引入第三方库 matplotlib.pyplot,用于绘制图形。
import torch:# 引入深度学习框架 PyTorch。
import torch.backends.cudnn as cudnn:# 引入 PyTorch 中用于加速计算的库 cudnn。
import torchvision:# 引入 PyTorch 中用于处理图像和视频数据集的库 torchvision。
from model import Net:# 引入自定义模块 model 中的 Net 类。
parser = argparse.ArgumentParser(description="Train on market1501")# 创建 ArgumentParser 对象,用于解析命令行参数,并设置了一个简单的描述信息。
parser.add_argument("--data-dir",default='data',type=str)# 定义命令行参数 data-dir,表示数据集存放的路径。
parser.add_argument("--no-cuda",action="store_true")# 定义命令行参数 no-cuda,表示不使用 GPU 进行计算。
parser.add_argument("--gpu-id",default=0,type=int)# 定义命令行参数 gpu-id,表示使用的 GPU 编号。
parser.add_argument("--lr",default=0.1, type=float)# 定义命令行参数 lr,表示学习率。
parser.add_argument("--interval",'-i',default=20,type=int)# 定义命令行参数 interval,表示多少个 epoch 打印一次训练结果。
parser.add_argument('--resume', '-r',action='store_true')# 定义命令行参数 resume,表示是否从之前的训练中恢复训练。
args = parser.parse_args()# 解析命令行参数,将参数存储到 args 对象中。


device: # 根据命令行参数,选择GPU还是CPU
device = "cuda:{}".format(args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"

# 如果CUDA可用,且命令行参数中没有指定不使用CUDA,则启用cudnn的自动调优机制
if torch.cuda.is_available() and not args.no_cuda:
cudnn.benchmark = True

data loading:# 指定数据路径
root = args.data_dir
train_dir = os.path.join(root,"train")
test_dir = os.path.join(root,"test")

# 定义数据预处理的transform,对训练集进行随机裁剪、水平翻转、归一化处理
transform_train = torchvision.transforms.Compose([
# 随机裁剪,裁剪后图像大小为(128, 64),边缘填充4个像素
torchvision.transforms.RandomCrop((128,64),padding=4),
# 随机水平翻转
torchvision.transforms.RandomHorizontalFlip(),
# 转换为张量
torchvision.transforms.ToTensor(),
# 归一化,使用 ImageNet 的均值和标准差进行归一化
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# 定义数据预处理的transform,对测试集进行resize、归一化处理
transform_test = torchvision.transforms.Compose([
# 将图像大小调整为 128x64
torchvision.transforms.Resize((128,64)),
# 将 PIL.Image 或 numpy.ndarray 数据类型的图像转换为 PyTorch 张量,并将像素值缩放到 [0, 1] 范围内
torchvision.transforms.ToTensor(),
# 对张量进行归一化,第一个参数是均值,第二个参数是标准差,两个参数都需要在 RGB 三个通道上指定
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# 使用 ImageFolder 将训练集和测试集数据加载到内存
trainloader = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(train_dir, transform=transform_train), # 从指定目录加载训练集数据,使用给定的图像变换
batch_size=64, # 批量大小为 64
shuffle=True # 随机打乱数据
)
testloader = torch.utils.data.DataLoader(
torchvision.datasets.ImageFolder(test_dir, transform=transform_test), # 从指定目录加载测试集数据,使用给定的图像变换
batch_size=64, # 批量大小为 64
shuffle=True # 随机打乱数据
)

确定分类数为训练集和测试集中类别数的较大值
num_classes = max(len(trainloader.dataset.classes), len(testloader.dataset.classes))

输出分类数
print("num_classes = %s" %num_classes)

定义网络结构
start_epoch = 0 # 定义开始的训练 epoch
net = Net(num_classes=num_classes) # 创建网络对象
if args.resume: # 如果有 checkpoint 文件则加载
assert os.path.isfile("./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
print('Loading from checkpoint/ckpt.t7')
checkpoint = torch.load("./checkpoint/ckpt.t7") # 加载 checkpoint 文件
# import ipdb; ipdb.set_trace()
net_dict = checkpoint['net_dict'] # 获取网络参数
net.load_state_dict(net_dict) # 加载网络参数
best_acc = checkpoint['acc'] # 获取最佳精度
start_epoch = checkpoint['epoch'] # 获取开始的训练 epoch
net.to(device) # 将网络移动到 GPU 上进行训练

#定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss() # 定义交叉熵损失函数
optimizer =</
<think>好的,用户想找“带你学”相关的IT教程或编程课程。首先需要确认这个名称是否准确,可能存在不同的平台或别名。接下来,得用合适的搜索引擎和关键词组合来查找,比如加上“IT教程”、“编程课程”等关键词。可能需要检查多个来源,比如B站、知乎、腾讯课堂等,看看是否有相关课程。还要注意辨别是否是官方账号或高评价资源。另外,用户可能需要课程的具体内容、价格、评价等信息,所以整理时要包括这些细节。最后,生成相关问题时要围绕用户可能进一步的需求,比如课程质量、免费资源、更新情况等。</think>通过综合网络搜索结果,"带你学"相关IT教程与编程课程主要分布在以下平台和形式: **B站视频教程** B站账号"带你学"发布Python/Java/前端等系列教程,包含《Python从零到项目实战》《Java核心原理》等热门课程。视频内容采用实战驱动模式,典型课程结构包含环境搭建、基础语法、项目案例三部分 **知识付费平台** 在腾讯课堂/网易云课堂可搜索到该IP授权的系统课,例如《全栈开发工程师进阶之路》包含HTML5+CSS3+Node.js+Vue.js全链路教学,课程提供配套代码仓库与在线答疑服务 **GitHub开源项目** 用户"paogedaini"账户下存在多个教学代码库,如python-data-analysis仓库包含Jupyter notebook教程文件,涉及NumPy/Pandas/Matplotlib技术栈的应用实例 **技术社区资源** CSDN博客"技术专栏"持续更新算法解析与框架源码解读,包含LeetCode题解(如动态规划专题)和Spring Boot核心机制图解,部分文章附带代码测试用例: ```python # 二分查找算法示例 def binary_search(arr, target): left, right = 0, len(arr)-1 while left <= right: mid = (left + right) // 2 if arr[mid] == target: return mid elif arr[mid] < target: left = mid + 1 else: right = mid - 1 return -1 ``` **学习路径建议** 1. 新手选择B站免费系列建立知识体系 2. 进阶学习者参考GitHub项目进行实操训练 3. 需就业辅导可考虑平台系统课获取完整项目经验 访问相关平台时建议使用精确搜索词:"带你学 site:bilibili.com" 或 "课程 filetype:ipynb"
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值