在构建AI驱动的应用程序时,知识获取和管理是非常关键的一环。今天,我们将深入探讨 Rememberizer ——一个由 SkyDeck AI Inc. 创建的知识增强服务,专门用于从庞大的知识库中高效检索文档。本文将详细阐述如何通过Rememberizer提取文档、实现上下文增强,以及在实际项目中的应用。
1. 技术背景介绍
在许多AI应用中,尤其是问答和决策支持系统中,仅依靠语言模型的内置知识往往是不够的。为了克服这一局限性,检索增强生成 (Retrieval-Augmented Generation, RAG) 框架成为一种流行的解决方案。RAG结合了文档检索与生成模型,为生成的答案提供更高的准确性和实时性。
Rememberizer作为一个知识增强服务,可以从巨大的知识库中提取与查询相关的文档。通过与下游模型集成,Rememberizer大幅提升了回答复杂问题或处理动态信息的能力。
2. 核心原理解析
Rememberizer的核心功能是文档检索,通过其API支持快速匹配用户查询(query
)与知识库中的文档。关键机制包括:
- Top-K 检索:通过设置
top_k_results
参数限制返回的文档数量,仅提供最相关的文档。 - 环境变量支持:通过设置环境变量
REMEMBERIZER_API_KEY
简化API密钥的配置。 - 集成性:可以轻松与其他语言模型(例如OpenAI API支持的模型)集成,共同完成检索增强的任务。
3. 代码实现演示
以下是如何在Python项目中使用Rememberizer服务的完整代码演示,包括文档检索和问答流程。
3.1 获取相关文档
我们先设置API密钥并初始化RememberizerRetriever,随后使用 get_relevant_documents()
方法检索与查询相关的文档。
# 导入必要的库
from getpass import getpass
import os
from langchain_community.retrievers import RememberizerRetriever
# 设置API密钥
REMEMBERIZER_API_KEY = getpass("Enter your Rememberizer API Key: ")