在人工智能和大数据的时代,如何高效地存储和检索数据成为了一个重要的课题。本文将为您介绍如何使用Neo4j作为向量存储,与大语言模型(LLM)集成,实现对话历史的图存储。这种方法不仅能支持流畅的对话,还能对用户行为进行分析。
技术背景介绍
Neo4j是一种图形数据库,其强大的图存储和查询能力使其成为复杂数据关系存储的理想选择。在本方案中,我们将利用Neo4j的向量存储能力,以及其图形数据库特性,结合大语言模型,打造一个能够分析用户行为的智能对话系统。
核心原理解析
在这个系统中,Neo4j不仅用于存储用户会话的对话历史,还用于存储文本的嵌入向量。这些向量通过大语言模型生成,并且允许快速高效的相似性查询。通过Neo4j图分析功能,可以深入挖掘对话数据,提取用户行为模式。
代码实现演示
为了实现上述功能,首先需要配置环境变量:
export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export NEO4J_URI</