利用Neo4j进行向量存储与LLM集成:构建对话历史图

在人工智能和大数据的时代,如何高效地存储和检索数据成为了一个重要的课题。本文将为您介绍如何使用Neo4j作为向量存储,与大语言模型(LLM)集成,实现对话历史的图存储。这种方法不仅能支持流畅的对话,还能对用户行为进行分析。

技术背景介绍

Neo4j是一种图形数据库,其强大的图存储和查询能力使其成为复杂数据关系存储的理想选择。在本方案中,我们将利用Neo4j的向量存储能力,以及其图形数据库特性,结合大语言模型,打造一个能够分析用户行为的智能对话系统。

核心原理解析

在这个系统中,Neo4j不仅用于存储用户会话的对话历史,还用于存储文本的嵌入向量。这些向量通过大语言模型生成,并且允许快速高效的相似性查询。通过Neo4j图分析功能,可以深入挖掘对话数据,提取用户行为模式。

代码实现演示

为了实现上述功能,首先需要配置环境变量:

export OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
export NEO4J_URI</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值