使用OpenAI Functions Agent构建智能决策Agent

在本篇文章中,我们将介绍如何使用OpenAI Functions Agent来创建一个智能决策Agent。这个Agent可以利用Tavily的搜索引擎在互联网上查找信息,并做出相关行动决策。

技术背景介绍

OpenAI Functions Agent是一种模板,旨在使用OpenAI的函数调用功能来构建Agent,使其能够根据需求做出决策。这种架构允许Agent在不确定的时候查找在线信息,从而增强其决策的准确性和全面性。

核心原理解析

OpenAI Functions Agent通过集成OpenAI API和Tavily API,实现了在线信息查询与决策功能的结合。通过LangChain CLI工具,我们可以快速创建和管理这些Agent应用。

环境配置

在开始之前,需要设置以下环境变量:

  • OPENAI_API_KEY: 用于访问OpenAI模型的API密钥。
  • TAVILY_API_KEY: 用于访问Tavily服务的API密钥。

代码实现演示(重点)

首先,确保安装LangChain CLI:

pip install -U langchain-cli

创建一个新的LangChain项目,并将OpenAI Functions Agent作为唯一包安装:


                
### 如何使用LangChain开发智能体(Agent) #### 基础概念 LangChain 提供了一种灵活的方式来构建智能体(Agent)。这些智能体可以根据给定的任务调用一系列工具并执行相应操作。通过 LangChain 的 `Agent` 功能模块,开发者能够轻松集成各种外部服务和自定义逻辑[^1]。 #### 工具包的作用 在 LangChain 中,“工具”是指可以由智能体使用的具体功能单元。“工具包”则是指一组预先配置好的工具集合,旨在解决某一领域内的特定问题。例如,存在专门针对 CSV 文件处理的工具包以及用于 GitHub 操作的工具包等[^2]。 #### 示例代码展示 下面提供了一个完整的 Python 脚本实例来说明如何基于 LangChain 构建一个简单的智能体: ```python from dotenv import load_dotenv from langchain.agents import AgentExecutor, create_openai_functions_agent, load_tools from langchain.tools.tavily_search import TavilySearchResults from langchain.utilities.tavily_search import TavilySearchAPIWrapper from langchain.chat_models import ChatOpenAI from langchain import hub load_dotenv() def get_function_tools(): search = TavilySearchAPIWrapper() tavily_tool = TavilySearchResults(api_wrapper=search) tools = [tavily_tool] tools.extend(load_tools(['wikipedia'])) return tools def initialize_agent(): llm = ChatOpenAI(model="gpt-4", temperature=0.1) prompt = hub.pull("hwchase17/openai-functions-agent") tools = get_function_tools() agent = create_openai_functions_agent(llm, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) result = agent_executor.invoke({"input": "Who is the owner of Tesla company? Let me know details about owner."}) print(result) initialize_agent() ``` 此脚本展示了如何加载环境变量、初始化大型语言模型(LLM)、设置提示模板、加载所需工具,并最终运行智能体以查询特斯拉公司所有者的信息[^3]。 #### 高级特性支持 对于更加复杂的场景需求,除了基础的功能外,还可以探索如下几个方向: - **定制化智能体**:允许用户根据实际业务情况设计专属的行为模式。 - **流式响应机制**:实现逐步返回计算结果的能力。 - **结构化输出管理**:确保最终的结果形式满足预期标准[^1]。 另外值得注意的是,在某些情况下可能还需要引入额外的服务接口作为扩展能力的一部分,比如天气预报插件就是这样一个典型的应用案例[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值